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Motivation

APT Groups Target Firms Working on
COVID-19 Vaccines

Microsoft Says Attacks on Seven Companies Blocked

Coronavirus
Injection only
:\,\“m 5ml Store Fr

— | ——————
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Motivation

Nuclear Weapons Agency Hacked in
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Motivation

Google: North Korean hackers have targeted
security researchers via social media

Google TAG warns security researchers to be on the lookout when approached by unknown individuals on social
media.

Scrutinizer. Omid Mirzaei 4



Northeastern University

Motivation

* Previous efforts to detect code reuse:
— Binary and code similarity testing
— Clone detection

— (Fuzzy) hashing
« Existing approaches are inadequate for these reasons:

— Lack of ground truth

— Intense use of evasive techniques
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e Scrutinizer Overview
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Main Idea

 Identifying code similarities that exist between an unknown sample and
those that are known to be used by threat actors from different
campaigns

e Modeling phase

— Aim: creating a large knowledge base of previously observed and
tagged malware campaigns
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Run-time Monitoring

e Input:
— Malware and benign binaries
* Qutput:

— Decompiled code

e Steps:
— Running samples in a dynamic analysis engine
— Taking snapshots at different stages of the dynamic analysis

— Re-constructing source code from binaries by integrating
decompiled codes of snapshots
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Function Vectorization

e Input:
— Decompiled code
* Qutput:
— Abstract Syntax Tree (AST) vector

void FUN_100leabO0 (void)
{ Vr = < FUNCTION_DECL, DECL_STMT, VAR_DECL,

ié.(pcvarl == (char *)0x0) {
pCVarl - SDAT 10055b20; DECL_STMT, ..., IF_STMT, BINARY_OPERATOR,

alse ¢ I:> ... \CALL_EXPR|DECL_REF_EXPR, ..., IF_STMT,

pcVarl = pcVarl + 1;
} COMPOUND_STMTJCALL_EXPR]..., RETURN_SMT >

wsprintfA (&local 1llc, &DAT 10042bf4,pcVarl);

LVar3 = RegCreateKeyExA(...);

if (Lvar3 == 0) {
RegSetValueExA(...);
RegCloseKey (local 18);

}

return;
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Function Encoding

e Input:

Function1

Function2
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Function Encoding
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Function Encoding
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Encoding Clustering

e Input:

— Function encodings
* Qutput:

— Clusters of similar function encodings (knowledge base)

tag, = [OceanLotus = 66 % , DarkHydrus = 34%] tag, = [Barium = 42 % , Turla = 58%]
1 2
tag; = [Benign = 63 % , Turla = 37%] tag, = [Barium = 43 % |Malware|= 57%)]
3 4
Knowledge Base
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Main Idea

e Testing phase
— Aims:
« Filtering noisy functions

* Detecting code reuse
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Filtering Noisy Functions

* Input:

Function encodings

* Qutput:

All functions in an unknown sample that are not identified as noisy

In other words, functions that are mainly observed in malware

« What are noisy functions and why should they be discarded?

Functions that are frequent in both malware and benign samples

Malware and benign samples share significant volumes of standard code

Shared functions can impact the performance of ML-based systems

Analyzing less functions saves resources

Scrutinizer. Omid Mirzaei
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Filtering Noisy Functions

* How noisy functions in an unknown sample are filtered?
— All functions are encoded initially
— All functions are assigned to previously known clusters

— For each function:

* We first inspect the tag of the cluster to which the function has been
assigned

 If the majority (0) of functions in the cluster are benign:
— The function is discarded
* Otherwise:

— It 1s saved for code reuse detection
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Filtering Noisy Functions

tag, = [OceanLotus = 66 %, DarkHydrus = 34%] tag, = [Barium = 42 %, Turla = 58%]
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Detecting Code Reuse

e Input:
— Remaining functions from filtering step
* Qutput:

— A report which shows how much overlap exists between an
unknown sample and those which are known to be used by
specific campaigns

 How this overlap 1s detected?

— Function encodings are assigned to previously created clusters

— Clusters are inspected automatically to find commonalities

Scrutinizer. Omid Mirzaei
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Detecting Code Reuse

tag, = [OceanLotus = 66 %, DarkHydrus = 34%] tag, = [Barium = 42 %, Turla = 58%]
1 2
&)
tag; = [Benign = 63 % , Turla = 37%] tag, = [Barium = 43 % , Malware = 57%)]
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Detecting Code Reuse
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Detecting Code Reuse

tag, = [OceanLotus = 66 %, DarkHydrus = 34%] tag, = [Barium = 42 %, Turla = 58%]
1 2
&)
tag; = [Benign = 63 % , Turla = 37%] tag, = [Barium = 43 % , Malware = 57%)]
3
Knowledge Base

Es I CBarium = 2

. @ Cluster Inspection CocoanLotus —

>
- . CDarkHydrus =
CMalware = 2
31

Scrutinizer. Omid Mirzaei



Northeastern University

Detecting Code Reuse
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Detecting Code Reuse
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Detecting Code Reuse
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Outline

e Results
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Results

Datasets

Phase Data Type #Samples Size Avg LOC Complexity
Modeling Malware [18] 12,540 0.55 106.21 11.05
Benign [9] 31,475 0.31 35.73 5.80
Total 44,015
Testing Malware [18] 500 0.38 95.47 10.21
Benign [18] 2,500 0.29 33.25 5.76
Total 3,000
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Results

Function Encoding

 Automatic Verification

— Cross-validation

Prediction error statistics after 5-fold cross-validation

Type Mean Standard Deviation Median
Malware | 0.082 0.097 0.031
Benign 0.056 0.061 0.004
Both 0.058 0.071 0.017

 Manual Verification

— 1000 samples
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Results

Cluster Analysis

We leveraged HDBSCAN algorithm to group function
embeddings into different clusters

We reduced the dimension of function embedding from 128 to 8
using PCA to speed up the clustering process

We could find 1+ million clusters with similar function
encodings

— 91% of clusters were completely benign
— 3.2% of clusters were completely malicious
— 5.88% of clusters were mixed

The average size of clusters was around 5

The largest cluster had 14K+ function embeddings
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Results

Real-World Deployment - Filtering

* The filtering mechanism works well in practice by filtering a

median of 126 functions (*56% of code).
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Results
Real-World Deployment - Filtering

* The applied filtering mechanism improves the TPR of a
classification system by 10% and decreases the FPR by 8.8%
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Results
Real-World Deployment - Code Reuse Analysis on APT Campaigns

 Intra-campaign code reuse analysis

 Inter-campaign code reuse analysis

Campaign analysis result for a subset of samples that we could manually verify using online threat reports and AV scanners.

MD5 ‘ #Functions Discarded Functions (%) Assigned Campaign: similarity (%) Real Campaign
22d01fa2725ad7a83948f399144563f9 763 81.9 Turla: 58.0 Turla [26]
0d67422ba42d4a548e807b0298e372c7 225 55.1 GazaCybergang: 73.9 GazaCybergang [3]
655156£880655198962ca8dd746431e8 188 66.5 GazaCybergang: 64.0 GazaCybergang [3]
ff8d92dfbcda572ef97¢142017eec658 144 70.1 Barium: 38.5 Barium [26][8]
c11dd805de683822bf4922aecb9bfef’ 220 65.9 Barium: 38.4 Barium [26][8]
aae531a922d9cca9ddca3d98be09fodf 558 61.6 OilRig: 43.7 OilRig [26](8]
6a7bff614a1c2fd2901a5bd1d878be59 588 59.0 OilRig: 40.6 OilRig [26](8]
a921aa35deedf09fabee767824fd8f7e 44 68.2 GazaCybergang: 41.5 GazaCybergang [26][8]
0e441602449856e57d1105496023f458 73 61.6 Turla: 35.3 Turla [26]
7f05d410dc0d1b0e7a3fcc6cdda7a2ft 220 65.9 Barium: 38.4 Barium [26](8]
5571t68798¢71652db8a85596a4bab72 144 70.1 Barium: 38.5 Barium [26](8]
b0877494d36fab1f9f4219c3defbfb19 144 70.1 Barium: 38.5 Barium [26](8]
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Outline

e Discussion
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Discussion

e Accuracy
— Function encoding relies on training data

— Collecting data 1s a non-trivial task
* Decompilation is an error-prone process

* Features extraction tools cannot handle decompiled codes well due
to artifacts

* Analysis costs and potential bottlenecks
— Dynamic analysis

— Training and clustering processes
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Outline

e Conclusion
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Conclusion

« Targeted attacks are growing in number

« Lack of automated tools to inspect code reuse in malware
samples that are used in targeted attacks

* We have proposed an automated tool to fill this gap with the
following features:

— An ML-based function encoding mechanism

— A filtering mechanism to discard functions that are prevalent in
both malware and benign samples and to save analysis time

— An automatic code reuse detection and campaign assignment tool
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