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Motivation

• Previous efforts to detect code reuse:

– Binary and code similarity testing

– Clone detection

– (Fuzzy) hashing


• Existing approaches are inadequate for these reasons:

– Lack of ground truth 

– Intense use of evasive techniques
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Main Idea

• Identifying code similarities that exist between an unknown sample and 
those that are known to be used by threat actors from different 
campaigns


• Modeling phase

– Aim: creating a large knowledge base of previously observed and 

tagged malware campaigns
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Run-time Monitoring

• Input: 

– Malware and benign binaries


• Output: 

– Decompiled code


• Steps:

– Running samples in a dynamic analysis engine

– Taking snapshots at different stages of the dynamic analysis

– Re-constructing source code from binaries by integrating 

decompiled codes of snapshots
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• Input: 

– Decompiled code


• Output: 

– Abstract Syntax Tree (AST) vector

Function Vectorization
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General Architecture
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Function Encoding

• Input: 

– AST vector


• Output: 

– Function encoding
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Function Encoding
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Function Encoding
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• Input: 

– Function encodings


• Output: 

– Clusters of similar function encodings (knowledge base)

4

1
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tag4 = [Barium = 43 % , Malware = 57%]

tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

tag2 = [Barium = 42 % , Turla = 58%]

Encoding Clustering
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Main Idea

• Identifying code similarities that exist between an unknown 
sample and those that are known to be used by threat actors 
from different campaigns


• Modeling phase

– Aim: creating a large knowledge base of previously observed and 

tagged malware campaigns 

• Testing phase


– Aims:

• Filtering noisy functions

• Detecting code reuse
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Filtering Noisy Functions

• Input: 

– Function encodings


• Output: 

– All functions in an unknown sample that are not identified as noisy

– In other words, functions that are mainly observed in malware


• What are noisy functions and why should they be discarded?

– Functions that are frequent in both malware and benign samples

– Malware and benign samples share significant volumes of standard code

– Shared functions can impact the performance of ML-based systems

– Analyzing less functions saves resources
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Filtering Noisy Functions

• How noisy functions in an unknown sample are filtered?

– All functions are encoded initially

– All functions are assigned to previously known clusters

– For each function:


• We first inspect the tag of the cluster to which the function has been 
assigned


• If the majority (   ) of functions in the cluster are benign:

– The function is discarded


• Otherwise:

– It is saved for code reuse detection
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Filtering Noisy Functions
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Scrutinizer Overview
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Detecting Code Reuse

• Input: 

– Remaining functions from filtering step


• Output: 

– A report which shows how much overlap exists between an 

unknown sample and those which are known to be used by 
specific campaigns


• How this overlap is detected?

– Function encodings are assigned to previously created clusters 

– Clusters are inspected automatically to find commonalities
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cDarkHydrus = 1

Detecting Code Reuse
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Results

Datasets
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Results

Function Encoding

• Automatic Verification

– Cross-validation


• Manual Verification

– 1000 samples
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Results

Cluster Analysis

• We leveraged HDBSCAN algorithm to group function 
embeddings into different clusters


• We reduced the dimension of function embedding from 128 to 8 
using PCA to speed up the clustering process


• We could find 1+ million clusters with similar function 
encodings

– 91% of clusters were completely benign

– 3.2% of clusters were completely malicious

– 5.88% of clusters were mixed


• The average size of clusters was around 5

• The largest cluster had 14K+ function embeddings
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Results

Real-World Deployment - Filtering

• The filtering mechanism works well in practice by filtering a 
median of 126 functions (   56% of code).
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Results

Real-World Deployment - Filtering

• The applied filtering mechanism improves the TPR of a 
classification system by 10% and decreases the FPR by 8.8%
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Results

Real-World Deployment - Code Reuse Analysis on APT Campaigns

• Intra-campaign code reuse analysis

• Inter-campaign code reuse analysis
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Discussion

• Accuracy

– Function encoding relies on training data

– Collecting data is a non-trivial task


• Decompilation is an error-prone process

• Features extraction tools cannot handle decompiled codes well due 

to artifacts 


• Analysis costs and potential bottlenecks

– Dynamic analysis

– Training and clustering processes
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Conclusion

• Targeted attacks are growing in number

• Lack of automated tools to inspect code reuse in malware 

samples that are used in targeted attacks

• We have proposed an automated tool to fill this gap with the 

following features:

– An ML-based function encoding mechanism

– A filtering mechanism to discard functions that are prevalent in 

both malware and benign samples and to save analysis time

– An automatic code reuse detection and campaign assignment tool
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