
SCRUTINIZER: Detecting Code Reuse
in Malware via Decompilation and

Machine Learning

Omid Mirzaei, Roman Vasilenko, Engin Kirda, Long Lu, Amin Kharraz

18th Conference Detection of Intrusions and Malware & Vulnerability Assessment

DIMVA 2021

Scrutinizer. Omid Mirzaei

Motivation

￼2

Scrutinizer. Omid Mirzaei

Motivation

￼3

Scrutinizer. Omid Mirzaei

Motivation

￼4

Scrutinizer. Omid Mirzaei

Motivation

• Previous efforts to detect code reuse:

– Binary and code similarity testing

– Clone detection

– (Fuzzy) hashing

• Existing approaches are inadequate for these reasons:

– Lack of ground truth

– Intense use of evasive techniques

￼5

Scrutinizer. Omid Mirzaei

Outline

• Scrutinizer Overview

• Results

• Discussion

• Conclusion

￼6

Scrutinizer. Omid Mirzaei

Outline

• Scrutinizer Overview

• Results

• Discussion

• Conclusion

￼7

Scrutinizer. Omid Mirzaei

Main Idea

• Identifying code similarities that exist between an unknown sample and
those that are known to be used by threat actors from different
campaigns

• Modeling phase

– Aim: creating a large knowledge base of previously observed and

tagged malware campaigns

￼8

Scrutinizer. Omid Mirzaei

Scrutinizer Overview

General Architecture

￼9

Scrutinizer. Omid Mirzaei

Scrutinizer Overview

General Architecture

￼10

Scrutinizer. Omid Mirzaei

Run-time Monitoring

• Input:

– Malware and benign binaries

• Output:

– Decompiled code

• Steps:

– Running samples in a dynamic analysis engine

– Taking snapshots at different stages of the dynamic analysis

– Re-constructing source code from binaries by integrating

decompiled codes of snapshots

￼11

Scrutinizer. Omid Mirzaei

Scrutinizer Overview

General Architecture

￼12

Scrutinizer. Omid Mirzaei

• Input:

– Decompiled code

• Output:

– Abstract Syntax Tree (AST) vector

Function Vectorization

￼13

Scrutinizer. Omid Mirzaei

Scrutinizer Overview

General Architecture

￼14

Scrutinizer. Omid Mirzaei

Function Encoding

• Input:

– AST vector

• Output:

– Function encoding

￼15

cc

<FUNCTION_DECL, VAR_DECL, ..., RETURN_STMT> <FUNCTION_DECL, PARM_DECL, ..., RETURN_STMT>

Embedding Embedding

Function1 Function2

LSTM LSTM

Manhattan Distance Metric

Prediction

Similar/Dissimilar

Embedding Lookup

Embedding Matrix 1 Embedding Matrix 2

Sub-Network 2Sub-Network 1

1

2

4

2

5

3

1

3

Length = 128

Scrutinizer. Omid Mirzaei

Function Encoding

￼16

VF4, VF5

 VF4, VF6

 VF5, VF6

 VF1, VF2

Similar Pairs

Fuzzy hashing

AST Vectors
Buckets

1

2

3

Scrutinizer. Omid Mirzaei

Function Encoding

￼17

VF4, VF3

 VF5, VF3

 VF6, VF3

 VF4, VF1

 VF4, VF2

 VF5, VF1

 VF5, VF2

 VF6, VF1

 VF6, VF2

 VF3, VF1

 VF3, VF2

Dissimilar Pairs

Fuzzy hashing

AST Vectors +

+

+

Buckets
1

2

3

Scrutinizer. Omid Mirzaei

Scrutinizer Overview

General Architecture

￼18

Scrutinizer. Omid Mirzaei

• Input:

– Function encodings

• Output:

– Clusters of similar function encodings (knowledge base)

4

1

3

Knowledge Base

2

tag4 = [Barium = 43 % , Malware = 57%]

tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

tag2 = [Barium = 42 % , Turla = 58%]

Encoding Clustering

￼19

Scrutinizer. Omid Mirzaei

Main Idea

• Identifying code similarities that exist between an unknown
sample and those that are known to be used by threat actors
from different campaigns

• Modeling phase

– Aim: creating a large knowledge base of previously observed and

tagged malware campaigns

• Testing phase

– Aims:

• Filtering noisy functions

• Detecting code reuse

￼20

Scrutinizer. Omid Mirzaei

Scrutinizer Overview

General Architecture

￼21

Scrutinizer. Omid Mirzaei

Scrutinizer Overview

General Architecture

￼22

Scrutinizer. Omid Mirzaei

Filtering Noisy Functions

• Input:

– Function encodings

• Output:

– All functions in an unknown sample that are not identified as noisy

– In other words, functions that are mainly observed in malware

• What are noisy functions and why should they be discarded?

– Functions that are frequent in both malware and benign samples

– Malware and benign samples share significant volumes of standard code

– Shared functions can impact the performance of ML-based systems

– Analyzing less functions saves resources

￼23

Scrutinizer. Omid Mirzaei

Filtering Noisy Functions

• How noisy functions in an unknown sample are filtered?

– All functions are encoded initially

– All functions are assigned to previously known clusters

– For each function:

• We first inspect the tag of the cluster to which the function has been
assigned

• If the majority () of functions in the cluster are benign:

– The function is discarded

• Otherwise:

– It is saved for code reuse detection

￼24

δ

Scrutinizer. Omid Mirzaei

Filtering Noisy Functions

￼25

S
Unknown Sample

E1

E2 E3

E4

E5

E6

E7

E8

E9
Embedding Filtering

E1

E3

E5

E6

E7

E8

X
X

X

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

E9
E2

E4

E6

E8

2

tag2 = [Barium = 42 % , Turla = 58%]

E3

E5
E1

E7

Scrutinizer. Omid Mirzaei

Scrutinizer Overview

General Architecture

￼26

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

• Input:

– Remaining functions from filtering step

• Output:

– A report which shows how much overlap exists between an

unknown sample and those which are known to be used by
specific campaigns

• How this overlap is detected?

– Function encodings are assigned to previously created clusters

– Clusters are inspected automatically to find commonalities

￼27

Scrutinizer. Omid Mirzaei

cOceanLotus = 1
cDarkHydrus = 1

Detecting Code Reuse

￼28

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

￼29

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection cOceanLotus = 2
cDarkHydrus = 2

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

￼30

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection cOceanLotus = 2
cDarkHydrus = 2

cBarium = 1

cMalware = 1

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

￼31

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection cOceanLotus = 2
cDarkHydrus = 2

cBarium = 2

cMalware = 2

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

￼32

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection cOceanLotus = 2
cDarkHydrus = 2

cBarium = 3

cMalware = 3

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

￼33

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection cOceanLotus = 2
cDarkHydrus = 2

cBarium = 4

cMalware = 4

Scrutinizer. Omid Mirzaei

Detecting Code Reuse

￼34

4
tag4 = [Barium = 43 % , Malware = 57%]

1
tag1 = [OceanLotus = 66 % , DarkHydrus = 34%]

tag3 = [Benign = 63 % , Turla = 37%]

3

Knowledge Base

2

tag2 = [Barium = 42 % , Turla = 58%]

E1

E3

E5

E6

E7

E8

E6

E8

E3

E5
E1

E7

Cluster Inspection Report (x/6) OceanLotus = 33 %

DarkHydrus = 33 %

Barium = 17 %

Malware = 17 %

cOceanLotus = 2
cDarkHydrus = 2

cBarium = 4

cMalware = 4

Scrutinizer. Omid Mirzaei

Outline

• Scrutinizer Overview

• Results

• Discussion

• Conclusion

￼35

Scrutinizer. Omid Mirzaei

Results

Datasets

￼36

Scrutinizer. Omid Mirzaei

Results

Function Encoding

• Automatic Verification

– Cross-validation

• Manual Verification

– 1000 samples

￼37

Prediction error statistics after 5-fold cross-validation

Scrutinizer. Omid Mirzaei

Results

Cluster Analysis

• We leveraged HDBSCAN algorithm to group function
embeddings into different clusters

• We reduced the dimension of function embedding from 128 to 8
using PCA to speed up the clustering process

• We could find 1+ million clusters with similar function
encodings

– 91% of clusters were completely benign

– 3.2% of clusters were completely malicious

– 5.88% of clusters were mixed

• The average size of clusters was around 5

• The largest cluster had 14K+ function embeddings

￼38

Scrutinizer. Omid Mirzaei

Results

Real-World Deployment - Filtering

• The filtering mechanism works well in practice by filtering a
median of 126 functions (56% of code).

￼39

≈

Scrutinizer. Omid Mirzaei

Results

Real-World Deployment - Filtering

• The applied filtering mechanism improves the TPR of a
classification system by 10% and decreases the FPR by 8.8%

￼40

Scrutinizer. Omid Mirzaei

Results

Real-World Deployment - Code Reuse Analysis on APT Campaigns

• Intra-campaign code reuse analysis

• Inter-campaign code reuse analysis

￼41

Campaign analysis result for a subset of samples that we could manually verify using online threat reports and AV scanners.

Scrutinizer. Omid Mirzaei

Outline

• Scrutinizer Overview

• Results

• Discussion

• Conclusion

￼42

Scrutinizer. Omid Mirzaei

Discussion

• Accuracy

– Function encoding relies on training data

– Collecting data is a non-trivial task

• Decompilation is an error-prone process

• Features extraction tools cannot handle decompiled codes well due

to artifacts

• Analysis costs and potential bottlenecks

– Dynamic analysis

– Training and clustering processes

￼43

Scrutinizer. Omid Mirzaei

Outline

• Scrutinizer Overview

• Results

• Discussion

• Conclusion

￼44

Scrutinizer. Omid Mirzaei

Conclusion

• Targeted attacks are growing in number

• Lack of automated tools to inspect code reuse in malware

samples that are used in targeted attacks

• We have proposed an automated tool to fill this gap with the

following features:

– An ML-based function encoding mechanism

– A filtering mechanism to discard functions that are prevalent in

both malware and benign samples and to save analysis time

– An automatic code reuse detection and campaign assignment tool

￼45

