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Motivation (1/2)

» Android malware finds its way to both official and
third-party online app stores

Symantec
(Sep. 2019)
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Motivation (2/2)

» Wrong assumptions in previous studies:
— Malware authors are passive

— Attack vectors do not change regularly

New Mobile Malware
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Outline

» Background Information
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Background Information
Android app structure

lib/

assets/

AndroidManifest.xml

[ Android Application classes.dex

resources.arsc

META-INF/

res/
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Background Information
Anti-analysis techniques

» Data Manipulation (Perturbation)

»

»

»

»

»

»

Obfuscation

Dynamic Code Loading
Packing

Repackaging
Piggybacking

Emulation Detection
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Outline

» Iconography
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Iconography

u Android App Triage
l Android Malware Detection

w Evasion of Android Malware Detection
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Outline

» Android Apps Triage
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Android Apps Triage

Definition

» Using fast tools or techniques to narrow down
malware analysis

» Saving time

» Saving computational resources
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Android Apps Triage

Feature Categories

» Features extracted via static analysis:
— Meta-data (Manifest file)
— Market Data
— Java/Native Code
» Features extracted via dynamic analysis:
— App’s Behavior (function calls)
— Network Usage
— Root Exploits
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Android Apps Triage
Systems Overview (1/2)
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Android Apps Triage
Systems Overview (2/2)
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Outline

» Android Malware Detection
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Android Malware Detection
Overview

» Signature-based Systems

— Outdated dictionaries containing signatures

— Zero-day malware

— Polymorphic/Metamorphic/Oligomorphic malware
» ML-based Systems

— Computational resources

— Need for re-training (in offline ML systems)

— Vulnerability to adversarial attacks
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Signature-based Systems

Vendor Package Name Version # Downloads

AVG com.antivirus 6.23.8 +100M
Symantec | com.symantec.mobilesecurity 4.7.0.4456 +10M

Lookout com.lookout 10.28.1-f01e73e +100M
ESET com.eset.ems2.gp 5.1.25.0 +10M

Dr. Web com.drweb 11.3.2 +100M
Kaspersky com.kms.free 11.31.4.2437 +50M
Trend micro | com.trendmicro.tmmspersonal 11.0.1 +1M
ESTSoft com.estsoft.alyac 2.1.11.7 +10M
Zoner com.zoner.android.antivirus 1.15.3 +1IM
Webroot com.webroot.security 5.5.6.46428 +1M
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Evasion of Signature-based Systems

&

Signature-based Malware Detection

Repacking
Disassembling and Reassembling
Obfuscation
Reflection

O
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Android Malware Detection
ML-based Systems

» How features are extracted?
» Which ML algorithm(s) 1s(are) applied?
» Where the ML model 1s kept?
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ML-based Systems

Features from Static Analysis
l
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Evasion of ML-based Systems

Features from static analysis
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ML-based Systems

Combination of multiple features from static analysis

Permissions Intents
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ML-based Systems

Features from dynamic analysis

O
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Evasion of ML-based Systems

Features from dynamic analysis

User Interactions
System Calls Memory Analysis

Anti-Emulation Techniques

Checking Telephony Services Information
Checking Build Information
Checking System Properties
Checking Presence of Emulator Related Files
Checking Debugger and Installer
Time & Logic Bombs
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ML-based Systems

Features from hybrid analysis
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ML-based Systems
One vs. Multiple Learning Algorithms
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ML-based Systems

On-Device vs. Off-Device

On-Device Off-Device Cloud-based
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Outline

» Discussion
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Discussion

» Characteristics of realistic adversarial attacks:
— Preserving the app’s malicious behavior
— Maintaining the app’s integrity
— Evading ML-based malware detectors

» Considerations for malware detection systems?
— Robustness
— Adversarial Training
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Outline

» Conclusion
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Conclusion

» Malware 1s evolving continuously.

» Bot]
And
the

n academic and industrial systems for
roid malware detection are prone to error in

presence of adversaries.

» Even worse performance by the emergence of

inte

lligent malware 1n near future.

» A real need for resilient and robust systems.

32



Northeastern University

Questions?

Related Blog Post:
https://omirzaei.github.i0/blog/2019/Identifying Malicious Android Apps/

Other Relevant Information:
https://omirzaei.github.io/assets/pdf/PhD _Thesis.pdf
https://omirzaei.github.io/blog/2017/Android Malware Evolution/

Email: o.mirzaci(@northeastern.edu
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