Northeastern University

Identifying Malicious Android Applications
in the Presence of Adversaries:
A Cat-and-Mouse Game

Omid Mirzaei

Systems Security Lab (SecLab)

Khoury College of Computer Sciences
October 2019

@ OWASP Boston Application Security Conference

Northeastern University

Toy Example

Northeastern University

Motivation (1/2)

» Android malware finds its way to both official and
third-party online app stores

Symantec
(Sep. 2019)

Northeastern University

Motivation (2/2)

» Wrong assumptions in previous studies:
— Malware authors are passive

— Attack vectors do not change regularly

New Mobile Malware

QT Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

3,000,000
2,500,000
2,000,000
1,500,000
1,000,000

500,000

0

2016

2017

2018

McAfee Mobile Threat Report Q1, 2019

4

Northeastern University

Outline

» Background Information

» Iconography

» Android Apps Triage

» Android Malware Detection
» Discussion

» Conclusion

Northeastern University

Outline

» Background Information

Northeastern University

Background Information
Android app structure

lib/

assets/

AndroidManifest.xml

[Android Application classes.dex

resources.arsc

META-INF/

res/

Northeastern University

Background Information
Anti-analysis techniques

» Data Manipulation (Perturbation)

»

»

»

»

»

»

Obfuscation

Dynamic Code Loading
Packing

Repackaging
Piggybacking

Emulation Detection

Northeastern University

Outline

» Iconography

Northeastern University

Iconography

u Android App Triage
l Android Malware Detection

w Evasion of Android Malware Detection

10

Northeastern University

Outline

» Android Apps Triage

11

Northeastern University

Android Apps Triage

Definition

» Using fast tools or techniques to narrow down
malware analysis

» Saving time

» Saving computational resources

12

Northeastern University

Android Apps Triage

Feature Categories

» Features extracted via static analysis:
— Meta-data (Manifest file)
— Market Data
— Java/Native Code
» Features extracted via dynamic analysis:
— App’s Behavior (function calls)
— Network Usage
— Root Exploits

13

Northeastern University

Android Apps Triage
Systems Overview (1/2)

@)
Meta-data

Permissions
DroidRisk (2013)
MAST (2013), %
WHYPER (2013),

RiskMon (2014), MAST (2013)
MADAM (2016)

Java/Native Code

m API Methods
RiskMon (2014) Information Flows m

w oo o7

MAST (2013)

O
14

Northeastern University

Android Apps Triage
Systems Overview (2/2)

@)

Market Data

O
m Package Size MADAM (2016)

O

Developer Reputation

MADAM (2016)
O

MADAM (2016)

App's Behavior
O

m N | Network Usage w

m Root Exploits

RiskRanker (2017)

HBRG (2016)

O

O
15

Northeastern University

Outline

» Android Malware Detection

16

Northeastern University

Android Malware Detection
Overview

» Signature-based Systems

— Outdated dictionaries containing signatures

— Zero-day malware

— Polymorphic/Metamorphic/Oligomorphic malware
» ML-based Systems

— Computational resources

— Need for re-training (in offline ML systems)

— Vulnerability to adversarial attacks

17

Northeastern University

Signature-based Systems

Vendor Package Name Version # Downloads

AVG com.antivirus 6.23.8 +100M
Symantec | com.symantec.mobilesecurity 4.7.0.4456 +10M

Lookout com.lookout 10.28.1-f01e73e +100M
ESET com.eset.ems2.gp 5.1.25.0 +10M

Dr. Web com.drweb 11.3.2 +100M
Kaspersky com.kms.free 11.31.4.2437 +50M
Trend micro | com.trendmicro.tmmspersonal 11.0.1 +1M
ESTSoft com.estsoft.alyac 2.1.11.7 +10M
Zoner com.zoner.android.antivirus 1.15.3 +1IM
Webroot com.webroot.security 5.5.6.46428 +1M

18

Northeastern University

Evasion of Signature-based Systems

&

Signature-based Malware Detection

Repacking
Disassembling and Reassembling
Obfuscation
Reflection

O

19

Northeastern University

Android Malware Detection
ML-based Systems

» How features are extracted?
» Which ML algorithm(s) 1s(are) applied?
» Where the ML model 1s kept?

20

Northeastern University

ML-based Systems

Features from Static Analysis
l
PUMA (2014),
ICCDetector (2016)

API Methods AndroDialysis (2017,)
DroidAPIMiner (2013) Information Flows !

MUDFLOW (2015),

l Call Graphs Wu et al. (2016),
O

DeepFlow (2017)

Gascon et al. (2013) Control Flow Graphs l

O

O

LoopMC (2018)

®)

21

Northeastern University

Evasion of ML-based Systems

Features from static analysis

(@)

Permissions

O

Obfuscation,
Perturbations Intents

API Methods Obfuscation,

O Perturbations

Perturbations,
Reflection,
Obfuscation, O
Repackaging,
Piggybacking,
Packing,
Native Payloads,
Dynamic Code Loading

Call Graphs

Obfuscation,

Native Payloads, Control Flow Graphs

Dynamic Code Loading o

Obfuscation,
Loops . Dynamic Code Loading

Packing,
Native Payloads,
Dynamic Code Loading,
Loop Unrolling

Information Flows

Obfuscation
Packing
Dynamic Code Loading

O

22

Northeastern University

ML-based Systems

Combination of multiple features from static analysis

Permissions Intents

DroidSieve
(2017)

PiggyApp (2013),
Drebin (2014),
RevealDroid (2016)

API Methods

MAMADroid (2017)

Call Graphs

Control Flow Graphs
Information Flows

23

Northeastern University

ML-based Systems

Features from dynamic analysis

O
l User Interactions
O

Andromaly (2011) *
Wei et al. (2012),

! System Calls Arora et al. (2014)
O
opAMalDroid (20
Deep4MalDroid (2016) emory Analysis

O

Mosli et al. (2016)

24

Northeastern University

Evasion of ML-based Systems

Features from dynamic analysis

User Interactions
System Calls Memory Analysis

Anti-Emulation Techniques

Checking Telephony Services Information
Checking Build Information
Checking System Properties
Checking Presence of Emulator Related Files
Checking Debugger and Installer
Time & Logic Bombs

O

25

Northeastern University

ML-based Systems

Features from hybrid analysis

Features from
Static Analysis

DroidMat (2012)

Permissions, Logged Behavior Sequence,

API Methods, System Calls,

Control Flows, Information Flows,
Information Flows Power Consumption

Droid-Sec (2014)

Permissions,) -

API Methods Function Call Monitoring
Zhao et al. (2014)

Components Function Call Monitoring

26

Northeastern University

ML-based Systems
One vs. Multiple Learning Algorithms

Wy

Alam et al. (2013),
Yerima et al. (2015),
Sheen et al. (2015),

Bai et al. (2016),
Wang et al. (2017),

PIndroid (2017),

Mlifdect (2017),
DroidFusion (2017),
Feng et al. (2018)

O

27

Northeastern University

ML-based Systems

On-Device vs. Off-Device

On-Device Off-Device Cloud-based

Sahs et al. (2012),
Yerima et al. (2013), Penning et al. (2014),
DroidAPIMiner (2013), | ScanMe Mobile (2016)
LoopMC (2018)

Drebin (2014),
IntelliAV (2017)

28

Northeastern University

Outline

» Discussion

29

Northeastern University

Discussion

» Characteristics of realistic adversarial attacks:
— Preserving the app’s malicious behavior
— Maintaining the app’s integrity
— Evading ML-based malware detectors

» Considerations for malware detection systems?
— Robustness
— Adversarial Training

30

Northeastern University

Outline

» Conclusion

31

Northeastern University

Conclusion

» Malware 1s evolving continuously.

» Bot]
And
the

n academic and industrial systems for
roid malware detection are prone to error in

presence of adversaries.

» Even worse performance by the emergence of

inte

lligent malware 1n near future.

» A real need for resilient and robust systems.

32

Northeastern University

Questions?

Related Blog Post:
https://omirzaei.github.i0/blog/2019/Identifying Malicious Android Apps/

Other Relevant Information:
https://omirzaei.github.io/assets/pdf/PhD _Thesis.pdf
https://omirzaei.github.io/blog/2017/Android Malware Evolution/

Email: o.mirzaci(@northeastern.edu

33

https://omirzaei.github.io/
https://omirzaei.github.io/assets/pdf/PhD_Thesis.pdf
https://omirzaei.github.io/blog/2017/Android_Malware_Evolution/
mailto:o.mirzaei@northeastern.edu

