
AndrEnsemble: Leveraging API
Ensembles to Characterize Android

Malware Families

Omid Mirzaei, Guilermo Suarez-Tangil, José M. de Fuentes,
Juan Tapiador, Gianluca Stringhini

14th ACM Asia Conference on Computer and Communications Security
ASIACCS 2019

Introduction

• Android is the most popular OS as of today.
• Many Android apps are freely available via formal & third-party online app stores.
• Apps on third-party stores are weakly vetted.
• Therefore, Android malware find their way easily into app stores.
• Also, they are commonly hardened with advanced anti-analysis techniques.

AndrEnsemble.Omid Mirzaei 2

Outline

• Background and Contributions
• System Overview
• Results
• Takeaway
• Conclusion

AndrEnsemble.Omid Mirzaei 3

Outline

• Background and Contributions
• System Overview
• Results
• Takeaway
• Conclusion

AndrEnsemble.Omid Mirzaei 4

Background and Contributions
Malware Labeling

• Main idea:
• Assigning a family name to newly discovered malware specimens.

• How?
• Based on some static features and other Indicators of Compromise (IoC)

• AV vendors use different criteria to name samples and families
• Consequences? Inconsistencies

• Labels are not consistent with the actual behavior of apps.
• Each AV engine produces a different risk score and security report for a malicious app.
• Not all samples associated to a family are always related.
• It is common to find two samples in different families with related behavior.

• Solutions?
• Considering sub-families (variants)
• Extracting a unique behavioral core

AndrEnsemble.Omid Mirzaei 5

Background and Contributions
Main Contributions

• A characterization method for Android malware families based on common
ensembles of sensitive API calls.
• Study of common and rare ensembles in three types of malware:

• Ransomware
• SMS Trojans
• Banking Trojans

• Summary of anomalies observed in current family labeling of Android malware.

AndrEnsemble.Omid Mirzaei 6

Outline

• Background and Contributions
• System Overview
• Results
• Takeaway
• Conclusion

AndrEnsemble.Omid Mirzaei 7

System Overview
Method Hashing

• Main idea:
• Creating a fuzzy hash value for each method based on some features.

• List of features:
• Control flow graph signature created by Cesare’s grammar
• Method name and its class name
• Method’s intents
• Sensitive API calls
• Native and incognito methods

• Fuzzy hashing vs. regular hashing:
• In fuzzy hashing, the feature to be hashed is segmented into pieces.
• A rolling hash is used to join all the hashes of these segments together and create a fuzzy hash.

• Why fuzzy hashing? Suitable for comparative purposes.

AndrEnsemble.Omid Mirzaei 8

app 1 app 2 app 3

m41m31

ℎ"##

ℎ"$#

ℎ"%#

ℎ"&#

m12

m22

m32

ℎ"#%

ℎ"%%

ℎ"&%

m13
m33

ℎ"#&

ℎ"$&

ℎ"%&

ℎ"&&

ℎ"'&

ℎ"(&

m23

)*+,--#)*+,--%)*+,--&

⋆

⋆ ⋆

m53

m43

m63

m11

m21

Android Malware Family X

System Overview
AHG Construction: A Simple Example (1/10)

AndrEnsemble.Omid Mirzaei 9

Updating the Aggregated Hash Graph

{011,033,045}

71 = ℎ"## = ℎ"%% = ℎ"(&

System Overview
AHG Construction: A Simple Example (2/10)

AndrEnsemble.Omid Mirzaei 10

app 1 app 2 app 3

m41m31

ℎ"##

ℎ"$#

ℎ"%#

ℎ"&#

m12

m22

m32

ℎ"#%

ℎ"%%

ℎ"&%

m13
m33

ℎ"#&

ℎ"$&

ℎ"%&

ℎ"&&

ℎ"'&

ℎ"(&

m23

)*+,--#)*+,--%)*+,--&

⋆

⋆ ⋆

+

+m53

m43

m63

m11

m21

Android Malware Family X

System Overview
AHG Construction: A Simple Example (3/10)

AndrEnsemble.Omid Mirzaei 11

Updating the Aggregated Hash Graph

{011,033,045}

71 = ℎ"## = ℎ"%% = ℎ"(&

{0:1,0;5}

73 = ℎ"$# = ℎ"'&

System Overview
AHG Construction: A Simple Example (4/10)

AndrEnsemble.Omid Mirzaei 12

app 1 app 2 app 3

m41m31

ℎ"##

ℎ"$#

ℎ"%#

ℎ"&#

m12

m22

m32

ℎ"#%

ℎ"%%

ℎ"&%

m13
m33

ℎ"#&

ℎ"$&

ℎ"&&

ℎ"'&

ℎ"(&

)*+,--#)*+,--%)*+,--&

⋆

⋆ ⋆

+

+

‡

m53

m43

m63

m11

m21

ℎ"%&

‡m23

Android Malware Family X

System Overview
AHG Construction: A Simple Example (5/10)

AndrEnsemble.Omid Mirzaei 13

Updating the Aggregated Hash Graph

{011,033,045}

71 = ℎ"## = ℎ"%% = ℎ"(&

{0:1,0;5}

73 = ℎ"$# = ℎ"'&

{013,035}

75 = ℎ"#% = ℎ"%&

System Overview
AHG Construction: A Simple Example (6/10)

AndrEnsemble.Omid Mirzaei 14

app 1 app 2 app 3

m41m31

ℎ"##

ℎ"$#

ℎ"&#

m12

m22

m32

ℎ"#%

ℎ"%%

ℎ"&%

m13
m33

ℎ"#&

ℎ"$&

ℎ"%&

ℎ"&&

ℎ"'&

ℎ"(&

m23

)*+,--#)*+,--%)*+,--&

⋆

⋆ ⋆

+

+

‡

†
m53

m43

m63

m11

m21

‡ℎ"%#
†

Android Malware Family X

System Overview
AHG Construction: A Simple Example (7/10)

AndrEnsemble.Omid Mirzaei 15

Updating the Aggregated Hash Graph

{011,033,045}

71 = ℎ"## = ℎ"%% = ℎ"(&

{0:1,0;5}

73 = ℎ"$# = ℎ"'&

{013,035}

75 = ℎ"#% = ℎ"%&

{031,0:5}

7: = ℎ"%# = ℎ"$&

System Overview
AHG Construction: A Simple Example (8/10)

AndrEnsemble.Omid Mirzaei 16

Updating the Aggregated Hash Graph

71 = ℎ"## = ℎ"%% = ℎ"(&

{0:1,0;5}

73 = ℎ"$# = ℎ"'&

75 = ℎ"#% = ℎ"%& 7: = ℎ"%# = ℎ"$&

7> = ℎ"#&

7? = ℎ"&&

74 = ℎ"&%

{011,033,045}

{031,0:5}
7; = ℎ"&#

{051}

{053}

{055}

{015}

{013,035}

2 2

1

1
1

1

1
1

1

1

1
1

1

1

System Overview
AHG Construction: A Simple Example (9/10)

AndrEnsemble.Omid Mirzaei 17

{m33}

{m12, m23}

{m21, m43}

{m32}

{m31}

{m13}

{m11, m22, m63}

{m41, m53}

Updating the Aggregated Hash Graph

71

7375

7:7;

74
7>

7?

System Overview
AHG Construction: A Simple Example (10/10)

AndrEnsemble.Omid Mirzaei 18

System Overview
AHG Construction

• Main idea:
• Creating an Aggregated Hash Graph, a specific form of a call graph, for each malware family.

• What is an AHG?
• A bi-directional weighted graph.

• How to create an AHG for each family?
• Building a Hash Graph (HG) for each application in the family.
• Merging all HGs to end up with an AHG.

• Thus, in AHG:
• Each node (representative of one or more methods) is a fuzzy hash value obtained from the

previous step.
• Each edge shows whether or not there are connections between pairs of hashes.
• The weight of each edge shows how many apps do share that particular edge in the family.

AndrEnsemble.Omid Mirzaei 19

System Overview
API Ensemble Extraction

• Main idea:
• Identifying ensembles of API methods exercised by the majority of app in each family.

• Why APIs?
• API calls are appropriate representatives of an app’s behavior.

• How to extract API ensembles?
• Identifying all source methods
• Extracting all paths originating from source methods with respect to maximum length
• Recording sensitive API calls appearing in each path

AndrEnsemble.Omid Mirzaei 20

System Overview
Feature Vectors Creation

• Assigning a binary feature vector to each app based on the extracted ensembles
• Vector’s length is equal to the total number of extracted ensembles from the whole

dataset
• How to measure similarities and differences?

• Cosine distance
• It is 0: when vectors are very similar
• It is 1: when vectors are completely different

AndrEnsemble.Omid Mirzaei 21

Outline

• Background and Contributions
• System Overview
• Results
• Takeaway
• Conclusion

AndrEnsemble.Omid Mirzaei 22

Results
Dataset and Settings

AndrEnsemble.Omid Mirzaei 23

• AndroZoo contains around 8M apps from more than 3,000 families.
• Around 97% of apps are collected from GooglePlay, Anzhi and AppChina.
• Around 1%, 33% and 17% of apps in the above three markets are malware.

• Edges are common in more than 70% of apps
• We do not mine paths with lengths higher than 2.

Malware Type #Apps #Families Avg. Size

Ransomware 824 7 4.98

SMS Trojan 1,967 98 9.88

Banking Trojan 259 12 10.20

Total 3,050 117 8.35

Results
Most Common & Rarest Ensembles

AndrEnsemble.Omid Mirzaei 24

• Out of 25 ensembles extracted from Ransomware families:
• 11 ensembles are present in more than 70% of apps in different families
• Few ensembles are present in less than 2% of apps in different families

• Out of 168 unique ensembles extracted from SMS Trojan families:
• 3 ensembles are present in more than 50% of apps in all families
• 91 ensembles (54%) are present in less than 2% of apps in various families

• Out of 50 ensembles extracted from Banking Trojan families:
• 2 ensembles are shared by 50% of apps in different families
• 9 API ensembles are common in less than 5% of apps in various families

Results
Case Study: Fareac

AndrEnsemble.Omid Mirzaei 25

• 37 different specimens
• All samples (100%) share 3 API methods:

• isWifiEnabled() AND loadLibrary() AND getClassLoader()

• Other API ensembles which are common in more than 70% of apps:
• <setFlags(), getApplicationInfo()>
• query()
• getNetworkOperator()
• addFlags()
• crypto
• <openConnection(), connect()>
• exists() AND delete()
• getInputStream()
• <killProcess(), myPid()>

Results
Intra-family Characterization

AndrEnsemble.Omid Mirzaei 26

• Apps from two families with exactly the same signature:
• 4654EC...48F2.apk from slocker AND 8905B3...99DC.apk from gepew

• Apps from two families with slightly different signatures:
• C3829A...03DB.apk from svpeng AND 877D3B...2AE4.apk from slocker
• Share all ensembles except two:

• The first app overlays its window on top of others (addFlags())
• It also has a keyword database to identify encryption-related words in UI widgets (query())

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Takeaway

• Background and Contributions
• System Overview
• Results
• Takeaway
• Conclusion

AndrEnsemble.Omid Mirzaei 27

Takeaway

AndrEnsemble.Omid Mirzaei 28

• Malicious operations do not necessarily contain several sensitive API methods
• A considerable number of common ensembles contain only one sensitive API method

≈72% in ransomware, ≈ 21% in SMS Trojans, and ≈ 52% in banking Trojans

• Opposite to ransomware and banking Trojans, ensembles of two API methods
were the most common in SMS Trojans.

• We found several samples with identical ensembles though belonging to different
families.

Outline

• Background and Contributions
• System Overview
• Results
• Takeaway
• Conclusion

AndrEnsemble.Omid Mirzaei 29

Conclusion

AndrEnsemble.Omid Mirzaei 30

• Characterizing Android malware families based on ensembles of API methods
• Building an Aggregated Hash Graph (AHG) per family
• A greedy graph-mining algorithm based on the maximum length of paths

