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Abstract

Android is the leading operating system in smartphones with a big dif-
ference. Statistics show that 88% of all smartphones sold to end users in
the second quarter of 2018 were phones with the Android OS. Regard-
less of the operating systems which are running on smartphones, most of
the functionalities of these devices are offered through applications. There
are currently over 2 million apps only on the official Google store, known
as Google Play. This huge market with billions of users is tempting for
attackers to develop and distribute their malicious apps (or malware).

Mobile malware has raised explosively since 2009. Symantec reported
an increase of 54% in the new mobile malware variants in 2017 as com-
pared to the previous year. Additionally, more incentive has been provided
for profit-driven malware by the growth of black markets. This rise has
happened for Android malware as well since only 20% of devices are run-
ning the newest major version of Android OS based on Symantec report in
2018. Android continued to be the most targeted platform with the biggest
number of attacks in 2015. After that year, attacks against the Android
platform slowed for the first time as attackers were faced with improved
security architectures though Android is still the main appealing target OS
for attackers. Moreover, advanced types of Android malware are found
which make use of extensive anti-analysis techniques to evade static or
dynamic analysis.

To address the security and privacy concerns of complex Android mal-
ware, this dissertation focuses on three main objectives. First of all, we
propose a light-weight yet efficient method to identify risky Android ap-
plications. Next, we present a precise approach to characterize Android
malware based on their malicious behavior. Finally, we propose an adap-
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tive learning system to address the security concerns of obfuscation in An-
droid malware.

Identifying potentially dangerous and risky applications is an important
step in Android malware analysis. To this end, we develop a triage system
to rank applications based on their potential risk. Our approach, called Tri-
Flow, relies on static features which are quick to obtain. TriFlow combines
a probabilistic model to predict the existence of information flows with a
metric of how significant a flow is in benign and malicious apps. Based
on this, TriFlow provides a score for each application that can be used to
prioritize analysis. It also provides the analysts with an explanatory report
of the associated risk. Our tool can also be used as a complement with
computationally expensive static and dynamic analysis tools.

Another important step towards Android malware analysis lies in their
accurate characterization. Labeling Android malware is challenging yet
crucially important, as it helps to identify upcoming malware samples and
threats. A key challenge is that different researchers and anti-virus ven-
dors assign labels using their own criteria, and it is not known to what
extent these labels are aligned with the apps’ real behavior. Based on this,
we propose a new behavioral characterization method for Android apps
based on their extracted information flows. As information flows can be
used to track why and how apps use specific pieces of information, a flow-
based characterization provides a relatively easy-to-interpret summary of
the malware sample’s behavior.

Not all Android malware are easy to analyze due to advanced and easy-
to-apply anti-analysis techniques that are available nowadays. Obfuscation
is the most common anti-analysis technique that Android malware use to
evade detection. Obfuscation techniques modify an app’s source (or ma-
chine) code in order to make it more difficult to analyze. This is typically
applied to protect intellectual property in benign apps, or to hinder the pro-
cess of extracting actionable information in the case of malware. Since
malware analysis often requires considerable resource investment, detect-
ing the particular obfuscation technique used may contribute to apply the
right analysis tools, thus leading to some savings.

Therefore, we propose AndrODet, a mechanism to detect three popular
types of obfuscation in Android applications, namely identifier renaming,
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string encryption, and control flow obfuscation. AndrODet leverages on-
line learning techniques, thus being suitable for resource-limited environ-
ments that need to operate in a continuous manner. We compare our results
with a batch learning algorithm using a dataset of 34,962 apps from both
malware and benign apps. Experimental results show that online learning
approaches are not only able to compete with batch learning methods in
terms of accuracy, but they also save significant amount of time and com-
putational resources.

Finally, we present a number of open research directions based on the
outcome of this thesis.
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Resumen

Android es el sistema operativo líder en teléfonos inteligentes (también
denominados con la palabra inglesa smartphones), con una gran diferencia
con respecto al resto de competidores. Las estadísticas muestran que el
88% de todos los smartphones vendidos a usuarios finales en el segundo
trimestre de 2018 fueron teléfonos con sistema operativo Android. Inde-
pendientemente de su sistema operativo, la mayoría de las funcionalidades
de estos dispositivos se ofrecen a través de aplicaciones. Actualmente hay
más de 2 millones de aplicaciones solo en la tienda oficial de Google, cono-
cida como Google Play. Este enorme mercado con miles de millones de
usuarios es tentador para los atacantes, que buscan distribuir sus aplica-
ciones malintencionadas (o malware).

El malware para dispositivos móviles ha aumentado de forma exponen-
cial desde 2009. Symantec ha detectado un aumento del 54% en las nuevas
variantes de malware para dispositivos móviles en 2017 en comparación
con el año anterior. Además, el crecimiento del mercado negro (es decir,
plataformas no oficiales de descargas de aplicaciones) supone un incentivo
para los programas maliciosos con fines lucrativos. Este aumento también
ha ocurrido en el malware de Android, aprovechando la circunstancia de
que solo el 20% de los dispositivos ejecutan la versión más reciente del sis-
tema operativo Android, de acuerdo con el informe de Symantec en 2018.
De hecho, Android ha sido la plataforma que ha centrado los esfuerzos de
los atacantes desde 2015, aunque los ataques decayeron ligeramente tras
ese año debido a las mejoras de seguridad incorporadas en el sistema op-
erativo. En todo caso, existen formas avanzadas de malware para Android
que hacen uso de técnicas sofisticadas para evadir el análisis estático o
dinámico.
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Para abordar los problemas de seguridad y privacidad que causa el mal-
ware en Android, esta Tesis se centra en tres objetivos principales. En
primer lugar, se propone un método ligero y eficiente para identificar apli-
caciones de Android que pueden suponer un riesgo. Por otra parte, se pre-
senta un mecanismo para la caracterización del malware atendiendo a su
comportamiento. Finalmente, se propone un mecanismo basado en apren-
dizaje adaptativo para la detección de algunos tipos de ofuscación que son
empleados habitualmente en las aplicaciones maliciosas.

Identificar aplicaciones potencialmente peligrosas y riesgosas es un
paso importante en el análisis de malware de Android. Con este fin, en
esta Tesis se desarrolla un mecanismo de clasificación (llamado TriFlow)
que ordena las aplicaciones según su riesgo potencial. La aproximación
se basa en características estáticas que se obtienen rápidamente, siendo de
especial interés los flujos de información. Un flujo de información existe
cuando un cierto dato es recibido o producido mediante una cierta fun-
ción o llamada al sistema, y atraviesa la lógica de la aplicación hasta que
llega a otra función. Así, TriFlow combina un modelo probabilístico para
predecir la existencia de un flujo con una métrica de lo habitual que es
encontrarlo en aplicaciones benignas y maliciosas. Con ello, TriFlow pro-
porciona una puntuación para cada aplicación que puede utilizarse para
priorizar su análisis. Al mismo tiempo, proporciona a los analistas un in-
forme explicativo de las causas que motivan dicha valoración. Así, esta
herramienta se puede utilizar como complemento a otras técnicas de análi-
sis estático y dinámico que son mucho más costosas desde el punto de vista
computacional.

Otro paso importante hacia el análisis de malware de Android radica
en caracterizar su comportamiento. Etiquetar el malware de Android es
un desafío de crucial importancia, ya que ayuda a identificar las próxi-
mas muestras y amenazas de malware. Una cuestión relevante es que los
diferentes investigadores y proveedores de antivirus asignan etiquetas uti-
lizando sus propios criterios, de modo no se sabe en qué medida estas eti-
quetas están en línea con el comportamiento real de las aplicaciones. Sobre
esta base, en esta Tesis se propone un nuevo método de caracterización de
comportamiento para las aplicaciones de Android en función de sus flujos
de información. Como dichos flujos se pueden usar para estudiar el uso de
cada dato por parte de una aplicación, permiten proporcionar un resumen
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relativamente sencillo del comportamiento de una determinada muestra de
malware.

A pesar de la utilidad de las técnicas de análisis descritas, no todos los
programas maliciosos de Android son fáciles de analizar debido al uso de
técnicas anti-análisis que están disponibles en la actualidad. Entre ellas, la
ofuscación es la técnica más común que se utiliza en el malware de An-
droid para evadir la detección. Dicha técnica modifica el código de una
aplicación para que sea más difícil de entender y analizar. Esto se suele
aplicar para proteger la propiedad intelectual en aplicaciones benignas o
para dificultar la obtención de pistas sobre su funcionamiento en el caso
del malware. Dado que el análisis de malware a menudo requiere una in-
versión considerable de recursos, detectar la técnica de ofuscación que se
ha utilizado en un caso particular puede contribuir a utilizar herramientas
de análisis adecuadas, contribuyendo así a un cierto ahorro de recursos.
Así, en esta Tesis se propone AndrODet, un mecanismo para detectar tres
tipos populares de ofuscación, a saber, el renombrado de identificadores,
cifrado de cadenas de texto y la modificación del flujo de control de la apli-
cación. AndrODet se basa en técnicas de aprendizaje automático en línea
(online machine learning), por lo que es adecuado para entornos con re-
cursos limitados que necesitan operar de forma continua, sin interrupción.
Para medir su eficacia respecto de las técnicas de aprendizaje automático
tradicionales, se comparan los resultados con un algoritmo de aprendizaje
por lotes (batch learning) utilizando un dataset de 34.962 aplicaciones de
malware y benignas. Los resultados experimentales muestran que el en-
foque de aprendizaje en línea no solo es capaz de competir con el basado
en lotes en términos de precisión, sino que también ahorra una gran canti-
dad de tiempo y recursos computacionales.

Tras la exposición de las contribuciones anteriormente mencionadas,
esta Tesis concluye con la identificación de una serie de líneas abiertas de
investigación con el fin de alentar el desarrollo de trabajos futuros en esta
dirección.

xvii





Biography

Omid Mirzaei is a Ph.D. candidate in the Computer Security Lab (COSEC)
at the Department of Computer Science and Engineering of Universidad
Carlos III de Madrid (UC3M). His Ph.D. is funded by the Community
of Madrid and the European Union through the research project CIBER-
DINE (Ref. S2013/ICE-3095). His main area of research is computer
security. He is particularly interested in mobile security (e.g., security of
smartphones and autonomous vehicles), system security, malware anal-
ysis and reverse engineering. In addition, he is eager to tackle security
issues from a multi-objective perspective, i.e. trying to deal with such
problems by consuming the least possible amount of in hand resources.
During his Ph.D., he could achieve two outstanding awards, including the
third place award from CSAW-Europe’17 and the best previously pub-
lished paper award from JNIC’18. He has obtained a B.Sc. in Computer
Engineering-Software and a M.Sc. in Computer Engineering-Artificial In-
telligence from Azad University, Mashhad Branch, Iran. Additionally, he
has worked here for three years as a lecturer before joining COSEC at
Universidad Carlos III de Madrid.

xix





Contents

Acknowlegements v

Published and Submitted Content vii

Other Research Merits ix

Abstract xi

Resumen xv

Biography xix

1 Introduction 1

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . 3

1.2 Contributions and Organization . . . . . . . . . . . . . . . 4

2 Background 7

2.1 Android’s Architecture and Security Model . . . . . . . . 7

2.1.1 Android’s Architecture . . . . . . . . . . . . . . . 7

2.1.2 Android’s Security Model . . . . . . . . . . . . . 10



Contents

2.1.2.1 Application Sandboxing . . . . . . . . . 10

2.1.2.2 Permissions . . . . . . . . . . . . . . . 11

2.1.2.3 Inter-Process Communication . . . . . . 11

2.1.2.4 SELinux . . . . . . . . . . . . . . . . . 12

2.1.2.5 Code Signing . . . . . . . . . . . . . . 12

2.1.2.6 Multi-User Support . . . . . . . . . . . 13

2.2 Dalvik Bytecode . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Android Application Structure . . . . . . . . . . . . . . . 14

2.4 Android Malware Evolution . . . . . . . . . . . . . . . . 16

2.4.1 2010 - Android Malware Comes into Existence . . 17

2.4.2 2011 - The Rise of Repackaged Malware . . . . . 18

2.4.3 2012 - Targeting User’s Pocket and Privacy . . . . 21

2.4.4 2013 - The Evolution of Advanced Trojans . . . . 22

2.4.5 2014 - The Emergence of Ransomware . . . . . . 23

2.4.6 2015 - Charging Users by Sending Text Messages . 25

2.4.7 2016 - Looking for Super-User Privileges . . . . . 25

2.4.8 2017 - The Rise of Android Screen Lockers . . . . 27

2.4.9 2018 - Android Malware Predictions . . . . . . . . 27

2.5 Android Malware Research Datasets . . . . . . . . . . . . 27

2.5.1 Malgenome . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Drebin . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Contagio Mobile Mini-dump . . . . . . . . . . . . 29

2.5.4 PRAGuard . . . . . . . . . . . . . . . . . . . . . 30

2.5.5 AMD . . . . . . . . . . . . . . . . . . . . . . . . 30



Contents

2.5.6 AndroZoo . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Android Malware Analysis . . . . . . . . . . . . . . . . . 33

2.6.1 Reverse Engineering Tools . . . . . . . . . . . . . 33

2.6.1.1 Disassemblers . . . . . . . . . . . . . . 33

2.6.1.2 Decompilers . . . . . . . . . . . . . . . 34

2.6.2 Information Flow Analysis . . . . . . . . . . . . . 34

2.7 Anti-Analysis in Android Malware . . . . . . . . . . . . . 36

2.8 Data Mining Tools for Malware Analysis . . . . . . . . . 37

2.8.1 Classification . . . . . . . . . . . . . . . . . . . . 39

2.8.2 Clustering . . . . . . . . . . . . . . . . . . . . . . 40

2.8.3 Frequent Pattern Mining . . . . . . . . . . . . . . 41

2.9 Adversarial Machine Learning in Android Malware Analysis 42

3 TriFlow: Triaging Android Applications Using Speculative In-

formation Flows 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 System Overview . . . . . . . . . . . . . . . . . . 48

3.2.2 Predicting Information Flows . . . . . . . . . . . 50

3.2.3 Informative Information Flows . . . . . . . . . . . 51

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Experimental Setting . . . . . . . . . . . . . . . . 52

3.3.2 Flow Prediction Accuracy . . . . . . . . . . . . . 54

3.3.3 Flow Weights . . . . . . . . . . . . . . . . . . . . 57



Contents

3.3.4 App Triage . . . . . . . . . . . . . . . . . . . . . 61

3.3.4.1 Scoring and Prioritizing Apps . . . . . . 61

3.3.4.2 Score Breakdown . . . . . . . . . . . . 63

3.3.5 Efficiency . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . 65

3.4.2 Risk Notion . . . . . . . . . . . . . . . . . . . . . 66

3.4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.4 Evasion Attacks . . . . . . . . . . . . . . . . . . 68

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.1 Information Flow Analysis in Android . . . . . . . 69

3.5.2 Permission-Based Risk Metrics for Android Apps . 71

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Behavioral labeling of Android malware families 75

4.1 Approach overview . . . . . . . . . . . . . . . . . . . . . 75

4.2 Frequent Information Flow Patterns in Malware Families . 78

4.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Extracting Information Flows . . . . . . . . . . . 78

4.2.3 Frequent Patterns of Information Flows . . . . . . 80

4.2.4 Malware Family Classification Using Flow Patterns 81

4.2.5 Behavioral Similarity Among Families . . . . . . 83

4.2.6 Classifying Apps into Families . . . . . . . . . . . 84

4.3 Behavioral-Based Malware Clustering . . . . . . . . . . . 85



Contents

4.3.1 Behavioral Features . . . . . . . . . . . . . . . . 85

4.3.2 Feature Selection . . . . . . . . . . . . . . . . . . 88

4.3.3 Clustering . . . . . . . . . . . . . . . . . . . . . . 89

4.3.4 Behavioral Relevance of Clusters and Relation to

Families . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.5 Examples . . . . . . . . . . . . . . . . . . . . . . 94

4.3.5.1 Same Family, Same Behavior . . . . . . 94

4.3.5.2 Different Family, Same Behavior . . . . 97

4.3.5.3 Same Family, Different Behavior . . . . 99

4.3.5.4 Summary . . . . . . . . . . . . . . . . . 102

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . 105

4.4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.3 Repackaged Apps . . . . . . . . . . . . . . . . . . 106

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.1 Information Flow Analysis . . . . . . . . . . . . . 106

4.5.2 Android Malware Detection Using InfoFlows . . . 107

4.5.3 Pattern Mining in Android Apps . . . . . . . . . . 108

4.5.4 Malware Characterization and Classification . . . 109

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 AndrODet: An Adaptive Android Obfuscation Detector 112

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Obfuscation in Android . . . . . . . . . . . . . . . . . . . 115



Contents

5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . 117

5.3.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.3 Dataset Description . . . . . . . . . . . . . . . . . 119

5.3.4 Feature Extraction and Feature Selection . . . . . 120

5.3.4.1 Features for Identifier Renaming Detection120

5.3.4.2 Features for String Encryption Detection 122

5.3.4.3 Features for Control Flow Obfuscation

Detection . . . . . . . . . . . . . . . . . 123

5.3.5 Classification Algorithms and Hyper-Parameter

Tuning . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.1 Experimental Settings . . . . . . . . . . . . . . . 125

5.4.2 Identifier Renaming Detection . . . . . . . . . . . 126

5.4.3 String Encryption Detection . . . . . . . . . . . . 127

5.4.4 Control Flow Obfuscation Detection . . . . . . . . 129

5.4.5 Performance Evaluation for Combined Techniques 129

5.4.6 Comparison Against Batch Learning Algorithms . 130

5.4.6.1 Identifier Renaming Detection . . . . . 131

5.4.6.2 String Encryption Detection . . . . . . . 131

5.4.6.3 Control Flow Obfuscation Detection . . 132

5.4.6.4 Combined Obfuscation Techniques . . . 132

5.4.7 Performance Comparison: Time and Memory . . . 133

5.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . 135



Contents

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 136

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.8 Supplemental Data . . . . . . . . . . . . . . . . . . . . . 138

5.8.1 Distribution of Features for Identifier Renaming

Detection . . . . . . . . . . . . . . . . . . . . . . 138

5.8.2 Distribution of Features for String Encryption De-

tection . . . . . . . . . . . . . . . . . . . . . . . . 144

5.8.3 Distribution of Features for Control Flow Obfus-

cation Detection . . . . . . . . . . . . . . . . . . 148

6 Conclusions 153

6.1 Awards . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3 Research Visits . . . . . . . . . . . . . . . . . . . . . . . 155

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 155

References 159





List of Figures

2.1 The Android OS architecture [1]. . . . . . . . . . . . . . . 8
2.2 The structure of a typical Android application. . . . . . . . 15
2.3 The Android malware evolution over years. . . . . . . . . 17
2.4 An excerpt of smali code extracted from one of the main

FakePlayer classes. . . . . . . . . . . . . . . . . . . . . . 18

3.1 TRIFLOW Architecture. . . . . . . . . . . . . . . . . . . . 49
3.2 Distribution of the prediction errors for all information

flows in the two datasets. Note that the in both plots the
y-axis is in logarithmic scale. . . . . . . . . . . . . . . . . 56

3.3 Cumulative probability distribution of the flow weight val-
ues I(f). Note that the x-asis is given in logarithmic scale. 58

3.4 (a) Average and (b) maximum values of the flow
weight distribution with flows grouped by SuSi categories
(sources are placed in rows and sinks in columns). The
group NO_CATEGORY refers to sources and sinks classi-
fied as non-sensitive in SuSi. . . . . . . . . . . . . . . . . 60

3.5 Results of the triage evaluation. Each plot shows the dis-
tribution of the fraction of malware correctly prioritized
(y-axis) when a market operator can only afford to ana-
lyze w% of the samples (x-asis) at each time interval (e.g.,
daily-basis). Results are given for both RSS (left) and TRI-
FLOW (right). The red arrows within each plot represent
the gain achieved by each scoring system with respect to a
random prioritization policy. . . . . . . . . . . . . . . . . 62

3.6 Snippet of a TRIFLOW report for a malware app belonging
to the Plankton family. . . . . . . . . . . . . . . . . . . . 63

3.7 Number of sources vs number of sinks for all the apps in
our datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 65



List of Figures

3.8 Scoring time for all the apps in our datasets as a function
of each app’s size measured as the total number of possible
information flows. Note that the plot is in log-log scale. . 66

3.9 Cumulative time (in seconds) required to extract all possi-
ble information flows of a set of apps. . . . . . . . . . . . 67

4.1 Behavioral analysis procedure . . . . . . . . . . . . . . . 77
4.2 The intersection of AMD and Drebin datasets. . . . . . . . 79
4.3 Distribution of pattern sizes (Drebin dataset). . . . . . . . 81
4.4 Distribution of patterns support values (in logarithmic

scale) in Drebin dataset. . . . . . . . . . . . . . . . . . . . 82
4.5 Similarity matrices between malware families using the

cosine similarity between the TF-IDF vectors associated
with information flow patterns. Each row and column in
the matrix represents a family. Families have been ar-
ranged in the same order from left to right and from top
to down, hence the maximum similarity observed along
the main diagonal. Family labels have been removed for
better readability. . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Feature selection trials for different values of threshold. . . 89
4.7 Elbow evaluation to select the optimal number of clusters. 91
4.8 Centroids obtained after clustering the Drebin dataset. . . . 92
4.9 Centroids obtained after clustering the AMD dataset. . . . 92
4.10 Distribution of samples into clusters. . . . . . . . . . . . . 93
4.11 Number of clusters in which each family of the Drebin

dataset is present. . . . . . . . . . . . . . . . . . . . . . . 95
4.12 Number of clusters in which each family of the AMD

dataset is present. . . . . . . . . . . . . . . . . . . . . . . 96

5.1 ANDRODET architecture. . . . . . . . . . . . . . . . . . . 118
5.2 Distribution of methods with length 1 in obfuscated (a) and

non-obfuscated (b) apps. . . . . . . . . . . . . . . . . . . 121
5.3 Data preparation (left) and the overall architecture of

classification process (right), including parameter tuning,
model training and testing. White squares: non-obfuscated
apps; dark blue squares: apps with string encryption obfus-
cation; dashed blue squares: apps with ID renaming obfus-
cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4 Evolution of detector modules’ accuracies over time. . . . 128
5.5 Multi-label encoding of obfuscation techniques. . . . . . . 130



List of Figures

5.6 Comparison of time and memory consumption between
online learning algorithms using MOA (a) and batch learn-
ing algorithms using ATM (b) for Android obfuscation de-
tection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.7 Distribution of the average wordsize of methods in (a) ob-
fuscated and (b) non-obfuscated apps. . . . . . . . . . . . 139

5.8 Distribution of the average ASCII distances between con-
secutive extracted methods in (a) obfuscated and (b) non-
obfuscated apps. . . . . . . . . . . . . . . . . . . . . . . . 139

5.9 Distribution of methods with length 1 in (a) obfuscated and
(b) non-obfuscated apps. . . . . . . . . . . . . . . . . . . 140

5.10 Distribution of methods with length 2 in (a) obfuscated and
(b) non-obfuscated apps. . . . . . . . . . . . . . . . . . . 140

5.11 Distribution of methods with length 3 in (a) obfuscated and
(b) non-obfuscated apps. . . . . . . . . . . . . . . . . . . 141

5.12 Distribution of the average wordsize of classes in (a) ob-
fuscated and (b) non-obfuscated apps. . . . . . . . . . . . 141

5.13 Distribution of the average ASCII distances between con-
secutive extracted classes in (a) obfuscated and (b) non-
obfuscated apps. . . . . . . . . . . . . . . . . . . . . . . . 142

5.14 Distribution of classes with length 1 in (a) obfuscated and
(b) non-obfuscated apps. . . . . . . . . . . . . . . . . . . 142

5.15 Distribution of classes with length 2 in (a) obfuscated and
(b) non-obfuscated apps. . . . . . . . . . . . . . . . . . . 143

5.16 Distribution of classes with length 3 in (a) obfuscated and
(b) non-obfuscated apps. . . . . . . . . . . . . . . . . . . 143

5.17 Distribution of the average entropy of strings in (a) obfus-
cated and (b) non-obfuscated apps. . . . . . . . . . . . . . 144

5.18 Distribution of the average wordsize of strings in (a) ob-
fuscated and (b) non-obfuscated apps. . . . . . . . . . . . 144

5.19 Distribution of the average length of strings in (a) obfus-
cated and (b) non-obfuscated apps. . . . . . . . . . . . . . 145

5.20 Distribution of the average number of ’=’ characters in (a)
obfuscated and (b) non-obfuscated apps. . . . . . . . . . . 145

5.21 Distribution of the average number of ’-’ characters in (a)
obfuscated and (b) non-obfuscated apps. . . . . . . . . . . 146

5.22 Distribution of the average number of ’/’ characters in (a)
obfuscated and (b) non-obfuscated apps. . . . . . . . . . . 146



List of Figures

5.23 Distribution of the average number of ’+’ characters in (a)
obfuscated and (b) non-obfuscated apps. . . . . . . . . . . 147

5.24 Distribution of the average sum of repetitive characters in
(a) obfuscated and (b) non-obfuscated apps. . . . . . . . . 147

5.25 Distribution of the number of nodes in the CFG of (a) ob-
fuscated and (b) non-obfuscated apps. . . . . . . . . . . . 148

5.26 Distribution of the number of sinks in the CFG of (a) ob-
fuscated and (b) non-obfuscated apps. . . . . . . . . . . . 148

5.27 Distribution of the number of edges in the CFG of (a) ob-
fuscated and (b) non-obfuscated apps. . . . . . . . . . . . 149

5.28 Distribution of the number of Goto instructions per line of
code in (a) obfuscated and (b) non-obfuscated apps. . . . . 149

5.29 Distribution of the number of NOP instructions per line of
code in (a) obfuscated and (b) non-obfuscated apps. . . . . 150

5.30 Distribution of the total number of lines of code in (a) ob-
fuscated and (b) non-obfuscated apps. . . . . . . . . . . . 150

5.31 Distribution of the total number of lines of code in (a) ob-
fuscated and (b) non-obfuscated apps. . . . . . . . . . . . 151





List of Tables

3.1 Overview of the datasets used in this work. The upper
part of the table shows the source of our dataset together
with the number of samples from each source. The bottom
part shows the training/testing splits used during cross-
validation and the malware-to-goodware ratios. . . . . . . 53

3.2 Statistics of the training dataset. The size (in MB), number
of sources (src), number of sinks (snk), memory consumed
(in GB), and time (in seconds) are given on average per
app. The amount of memory (in GB) required represents
the maximum average. . . . . . . . . . . . . . . . . . . . 54

3.3 Flow prediction error statistics after 5-fold cross-validation
using only malware, only benign apps, and both. . . . . . . 55

3.4 Top ranked flows and their weight. . . . . . . . . . . . . . 59
3.5 Most relevant sources and sinks from sensitive categories. . 60
3.6 Information flow analysis tools for Android. . . . . . . . . 70

4.1 Source and sink categories in SuSi ( [2]) . . . . . . . . . . 86
4.2 Number and distribution of flows extracted from the appli-

cations in the Drebin dataset grouped by SuSi categories.
Only flows whose contribution is greater than 1% of the
total are shown. . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Number and distribution of flows extracted from the appli-
cations in the AMD dataset grouped by SuSi categories.
Only flows whose contribution is greater than 1% of the
total are shown. . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Selected features for the Drebin and AMD datasets. . . . . 88
4.5 Examples of samples from the same family of Drebin

dataset exhibiting similar behaviors. . . . . . . . . . . . . 97
4.6 Examples of samples from the same family of AMD

dataset exhibiting similar behaviors. . . . . . . . . . . . . 98



List of Tables

4.7 Examples of samples in different families of Drebin
dataset with similar behaviors. . . . . . . . . . . . . . . . 100

4.8 Examples of samples in different families of AMD dataset
with similar behaviors. . . . . . . . . . . . . . . . . . . . 101

4.9 Examples of samples in the same family of Drebin dataset
exhibiting different behaviors. . . . . . . . . . . . . . . . 102

4.10 Examples of samples in the same family of AMD dataset
exhibiting different behaviors. . . . . . . . . . . . . . . . 103

4.11 Average amount of time and memory consumed in each
step of our clustering approach per application. . . . . . . 104

5.1 Number of apps per obfuscation technique . . . . . . . . . 120
5.2 Set of all features considered for each detector module . . 120
5.3 Examples of identifiers extracted from an obfuscated mal-

ware sample in the Obad family. . . . . . . . . . . . . . . 122
5.4 Examples of identifiers extracted from a non-obfuscated

malware sample in the Univert family. . . . . . . . . . . . 122
5.5 A snapshot of constant strings extracted from obfuscated

malware in the Kyview and Triada families. . . . . . . . . 123
5.6 Performance metrics for each detection module. . . . . . . 128
5.7 Confusion matrix for multi-label classification with MOA

(real classes on rows and predicted classes on columns). . . 130
5.8 Comparison of the accuracy between two systems for An-

droid obfuscation detection based on online and batch
learning algorithms (maximum accuracies). . . . . . . . . 131

5.9 Confusion matrix for multi-label classification with MOA
on unseen applications (real classes on rows and predicted
classes on columns). . . . . . . . . . . . . . . . . . . . . 133

5.10 Confusion matrix for multi-label classification with ATM
on unseen applications (real classes on rows and predicted
classes on columns). . . . . . . . . . . . . . . . . . . . . 134





1
Introduction

Human life has witnessed a dramatic change with the rapid emergence and
evolution of new smart devices in particular, and the Internet of Things
(IoT) in general. These devices, either mobile such as smartphones and
smart vehicles, or non-mobile like smart TVs and smart buildings, have
opened up new opportunities. Nevertheless, growing capabilities of such
devices and their wide range of access to private sensitive information pose
serious security and privacy risks to their users.

Smartphones are now one of the most widespread devices in daily lives
with around 2.53 billion users in 2018 [3]. This world-wide popularity
has several reasons. First, they are usually small in size thanks to the
improvements in electronics and circuits design. Second, they are light-
weight and easily portable. Last but not least, they provide a great range
of functionalities based on various built-in equipment and technologies,
including high-quality cameras, powerful processors, GPS, cellullar data,
virtual intelligent assistants (e.g., Bixby in Samsung or Siri in Apple), and
their sensors. Most of these functionalities are currently offered to users
through applications which run on different operating systems.

Smartphone operating systems do not have the same market share. An-
droid is by far the dominant operating system at the moment with around
2 billion monthly active users announced by the Google’s CEO, Sundar
Pichai, in his keynote speech at the Google I/O 2017. Also, its market
share is 77.15% as of July 2018 compared to the second most popular op-
erating system, iOS, with a market share of 19.09% [4]. However, this
popularity has been abused by malware campaigns and has turned to be
the main root of concerns.

Although vulnerabilities have been identified at various layers of An-
droid operating system, applications are known to be the main cause of
vulnerabilities for several reasons. Google Play [5], the official market of
Android apps, allows everyone to upload any developed applications. Even
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though Google has tightened up its security regulations and defense mech-
anisms, many apps can bypass security checks and enter this repository
of apps which is used by millions of users every day. Google Play Pro-
tect [6] is another effort made by Google to protect Android smartphone
users against malware at real-time. However, despite all these attempts,
Android malware can still find their ways into devices and leak users’ sen-
sitive information. Furthermore, many tools are available at no cost which
help malware developers to reverse engineer famous benign Android apps
and to embed their malicious code into a repackaged version of such apps.
Ultimately, Android anti-analysis tools (including commercial ones) such
as obfuscators and packers are also widely abused by malware authors to
hide their malicious intents in Android applications [7] [8].

The rise in Android malware has been explosive since 2009; specially,
with the increase in the number of black markets which foster the devel-
opment of profit-driven malware [9]. Also, new variants of already known
malware specimens have outnumbered the new malware families accord-
ing to various security threat reports [10] [11]. All these show that security
enhancing mechanisms and systems are not yet mature enough to reduce
the number of Android malware security threats.

Malicious Android applications pose different amounts of risks to users
depending on how they treat sensitive user’s or device’s data. Sensitive data
can be in the form of any Personally Identifiable Information (PII) which
may be leaked in different ways either through the network or via text
messages [12]. Specifically, Android security model is the root cause of
many security and privacy risks apps pose to users. For instance, apps can
request different permissions whereas they may not use all of the granted
permissions (e.g., over-privileged apps). On the contrary, some apps may
use third-party libraries which are not inline with their main functionality
(e.g., advertising or tracking libraries [13] [14]). As libraries inherit the
same set of permissions granted to the apps, they can abuse them without
users’ consent.

Several tools have been proposed in recent years either to analyze and
characterize Android malware or to assess the security and privacy risks
posed to users by these malicious applications. Generally, all these tools
are classified into two main categories based on the type of features they
consider. The first group of tools make use of static features whereas the
second group is based on dynamic features extracted during apps’ runtime.
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The majority of these tools have their own limitations. The first group
misses parts of the app’s behavior which is exercised at runtime, and, thus,
cannot estimate its risk accurately while the second group requires sub-
stantial amount of resources both from time and memory.

1.1 Motivation and Objectives

This dissertation is highly motivated by some fundamental issues we found
in the area of Android malware analysis.

Firstly, both static and dynamic analysis tools suffer from specific short-
comings. Static analysis tools are usually imprecise and have high false
positive rates as they cannot model apps’ runtime behavior. Moreover, they
cannot scale well with the number of applications. Last but not least, tools
which are based on static features can be bypassed at low or no cost using
advanced obfuscation techniques. In contrast, dynamic analysis tools have
a high runtime overhead considering the fact that may also miss behav-
ior which are not exposed explicitly at runtime. Furthermore, they can be
evaded using emulation detection techniques.

Secondly, despite the existence of several Android malware datasets,
malware labels (known as families) are not consistent with apps’ real be-
havior [15]. One of the main causes for these inconsistencies is the lack of
appropriate standards for naming malware across different vendors [16].
In most cases, these labels are assigned to malicious apps based on static
information, including data about the developer, the source country, code
structures [17], etc. While these features could be obtained quickly, they
might be imprecise as they do not reflect how malware interacts with the
victim device and data. Moreover, they can be modified simply to bypass
the labeling system [18].

Thirdly, advanced anti-analysis techniques are vastly applied to recent
Android malware by both commercial and off-the-shelf anti-analysis tools
which hinders their accurate analysis [19]. In particular, obfuscated and
packed Android malware are now pervasive [7] [8]. According to a recent
study [20], 15% of the apps in the Google Play app store which is supposed
to contain benign apps are obfuscated. This amount is much higher in the
malicious apps that are present in the wild. Furthermore, both benign and
malicious apps make use of different packing techniques to hide their code.
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The complexity and diversity of tools and techniques for either obfuscation
or packing have introduced new barriers in protecting Android users.

The main goal of this dissertation is to address all the above issues we
encountered during our studies on Android malware analysis. Thus, we
have set the following main objectives:

• Developing a fast yet accurate triage system to identify Android ap-
plications with potentially dangerous and risky behaviors.

• Proposing a new characterization and labeling scheme for Android
malware which does not only rely on static features.

• Alleviating the difficulties in the current analysis of advanced An-
droid malware which are obfuscated with popular obfuscation tech-
niques.

1.2 Contributions and Organization

In this PhD dissertation, we have made the following contributions:

• A fast triage system, known as TRIFLOW, is presented in this the-
sis. It is a lightweight information flow based triage mechanism to
identify Android apps with potentially dangerous behavior. Here, we
do rely on information flows which can be effectively used to give
an informative summary of an application’s behavior. TRIFLOW in-
troduces the notion of speculative information flows. This means
that TRIFLOW extracts some features from apps, and, then, predicts
the existence of a flow based on them. Each predicted flow is then
scored by TRIFLOW in terms of its potential risk, which depends on
the flow’s observed prevalence in malware and benign applications.

• A behavioral-based labeling for Android malware is proposed in
this thesis based on information flows. In particular, our scheme to
characterize malware is based on patterns of flows rather than flows
themselves. Although flows are interesting as they show how apps
treat sensitive data, they provide limited information about apps’ be-
havior. Therefore, our approach considers a larger scale which is
different combinations of flows which do appear together in each
application.
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• An adaptive Android obfuscation detection system, called An-
drODet, is developed and proposed in this thesis with some outstand-
ing features. first, it is a modular system to detect three common
types of obfuscation in Android applications. Second, it is to deal
with multidex Android applications. Last but not least, it is an adap-
tive system which can improve its accuracy over time and does not
need to be re-trained.

The organization of this dissertation is as follows. We first provide
the readers with some background information in Chapter 2. Chapter
3 presents our fast triage system to identify risky Android applications.
Behavioral-based labeling of Android malware is discussed in Chapter 4
followed by an adaptive system to detect three common obfuscation tech-
niques in Android applications in Chapter 5. We finally conclude this dis-
sertation and propose some future research directions in Chapter 6.
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2
Background

This chapter contains the background needed for readers to understand the
whole proposals of this dissertation. In particular, we explain the Android’s
architecture and its security model in Section 2.1. Then, Dalvik bytecode
is briefly presented in Section 2.2 followed by an overview of the Android
application’s structure in Section 2.3. Section 2.4 discusses the evolution
of Android malware from the very beginning till today, and, also, provides
the readers with some predictions about future types of Android malware
that might come into existence. Android malware research datasets are all
presented in Section 2.5, and some common techniques used for Android
malware analysis are provided in Section 2.6. Furthermore, anti-analysis
techniques used by Android malware to evade detection are briefly ex-
plained in Section 2.7, and we end this chapter with a discussion of data
mining tools for Android malware analysis in Section 2.8.

2.1 Android’s Architecture and Security Model
This section presents the Android’s architecture and some basic concepts
related to its security model.

2.1.1 Android’s Architecture

Android operating system consists of several layers which are usually com-
posed of different components written either in Java or other programming
languages such as C/C++. Some of these components are developed by
third-party contributors of the Android Open Source Project (AOSP) such
as the Original Equipment Manufacturers (OEM) [21].

A Linux kernel forms the basis of Android operating system architec-
ture as shown in Fig. 2.1. Similar to other Unix-based systems, this kernel
provides all required drivers ranging from hardware and filesystem access
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Java Runtime
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Applications
System Applications User­Installed Applications

Figure 2.1: The Android OS architecture [1].

to process management and networking. However, it is different from the
Linux kernels you may find in other devices or operating systems. Partic-
ularly, the difference is in the new features (known as Androidisms [22])
added to the Linux kernel of Android from which Binder and paranoid net-
working are the most important ones. The most important role of Binder is
to handle the Inter-Process Communication (IPC) between applications,
whereas paranoid networking manages applications’ access to network
sockets.

On top of the Linux kernel, there is an important layer, called Native
Userspace, that consists of four main components, including Native Dae-
mon, Native Libraries, Hardware Abstraction Layer (HAL) and init. The
binary file, init, is the first process that starts running, and, next, starts all
other processes. Also, several native libraries (Non-Java libraries which
are mainly used by the system like C or C++ libraries) and native daemons
(programs written in languages other than Java and are running in the back-
ground) are accessible at this layer. The HAL component is a bridge be-
tween high-level representations of the hardware used in the libraries and
low-level representations used by the kernel. It defines a standard interface
for hardware vendors to implement that enables Android to be agnostic
about lower level driver implementations.
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As Android apps are developed mainly in Java, they need to be com-
piled and then executed by a Java Virtual Machine (JVM) which is known
as Runtime in the Android architecture. Dalvik was the first runtime in-
troduced in the earlier versions of Android (before Android 4.4 or KitKat)
which was based on Just-In-Time compilation (JIT). Thus, apps’ source
codes were compiled and then executed dynamically at runtime. However,
due to performance reasons, this runtime was replaced by another variant,
called Android Runtime (ART). ART is based on Ahead-Of-Time (AOT)
compilation, and, thus, apps are compiled using the on-device dex2oat tool
at install time. This can lead to a significant saving in memory consump-
tion.

Runtime Java libraries, defined mainly in java.* and javax.* packages,
are provided by the Java Runtime Libraries. These libraries may have some
native code dependencies as well. These native codes are linked into An-
droid’s core Java libraries by Java Native Interface (JNI). JNI handles both
calls to native codes from Java codes and the ones to Java codes from na-
tive codes. This layer is directly accessible from the Applications layer as
well as system services.

System Services implement the most fundamental features of Android
operating system, including telephony, network connectivity and display.
Each system service defines a remote interface that can be called from
other applications and services. Similar to runtime Java libraries, services
are mainly implemented in Java though some others are written in native
code.

Android Framework Libraries (also called framework) are in the next
layer of Android architecture. The framework includes all Java libraries
which are for the most part hosted under the android top-level package
and are not part of the standard Java runtime (java.*, javax.*, etc.). It
also includes the basic classes needed to develop Android applications
such as the ones for creating activities, services, content providers (in the
android.app.* packages) and GUI widgets (in the android.view.* and an-
droid.widget packages) to name a few. Furthermore, it provides necessary
classes to app developers in order to interact with device hardware.

Applications stand on the topmost layer of Android operating system
architecture. Apps are programs with which smartphone users do interact
directly. There exists two common types of apps, known as system appli-
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cations and user-installed applications. The apps in both groups have the
same structure and are built on top of Android framework.

System apps (typically mounted as /system) are included in the Android
operating system’s image, and, thus, cannot be manipulated or uninstalled
by users. However, users can update these apps if and only if they are
signed with the same private key. While these apps were treated similarly
in the earlier versions of Android (up to Android Jelly Bean) by giving
them the same number of permissions to access critical resources, only
privileged system apps (installed in /system/priv-app/ ) are allowed to ac-
cess these sensitive resources in the new versions of Android (from An-
droid KitKat).

User-installed apps (typically mounted as /data) can be uninstalled at
any time by users. These apps are encapsulated in their own security sand-
boxes and cannot affect apps in different sandboxes, neither can they access
other apps’ data. Moreover, user-installed apps are only allowed to access
resources for which they have been granted a permission.

2.1.2 Android’s Security Model
Similar to its architecture, Android’s security model takes advantage of
some security features offered by the Linux kernel. In what follows, pri-
mary security features of Android operating system are discussed briefly.

2.1.2.1 Application Sandboxing

One of the most important security features of Android is application sand-
boxing, also known as application isolation. In a Linux system, users’ re-
sources as well as processes are isolated since it is a multi-user operating
system. Thus, a user cannot access other users’ files without having an
explicit permission from the operating system. Here, each process is as-
signed a unique identity (called User ID or UID) based on the user that has
started it.

Android follows the same strategy in isolation but for applications rather
than users since smartphones are commonly known as personal devices. To
do so, it assigns a unique UID (or app ID) to each application upon installa-
tion. It then executes each application in a dedicated process (process-level
isolation) with that UID. A directory is also considered for each app that
other apps cannot read or write without required permissions (file-level
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isolation). This isolation at both process-level and file-level is called appli-
cation sandboxing. This kernel-level isolation is applied to all apps which
are executed either in a native or a virtual machine process. It is worth
mentioning that some apps (most often system applications) can have the
same UID, also known as shared ID. In this case, they may share some
system files and would run in one single process.

2.1.2.2 Permissions

As Android apps are isolated in sandboxes, they can solely access their
own files and any publicly available resources on the device. However,
apps cannot provide users with a rich functionality unless they are allowed
to access some additional resources. Such an extra access right is known
as permission. Android can control the access to many sensitive resources
such as sensors’ data and Internet connectivity through permissions that
can be enforced at various levels.

Apps should declare and request the required permissions in their mani-
fest file (discussed in Section 2.3). Permissions granted to the applications
during installation can be revoked or re-granted again at runtime in the
recent versions of Android (starting from Android Marshmallow). In the
earlier versions however, permissions could not be revoked once they were
granted to the apps. User-installed apps can define custom permissions as
well, restricting the access to an app’s resources and services to only those
apps which are created by the same developer.

2.1.2.3 Inter-Process Communication

Similar to other Unix-like operating systems, a process in Android cannot
access the memories of other processes and have its own address space. In
other words, process isolation is another security feature Android inherits
from its Linux kernel akin to Unix OS. Isolating processes improves the
stability and security of the apps which are running on the device. How-
ever, there are some cases in which one process may need to provide useful
service(s) for other processes.

Inter-Process Communication (IPC) is a mechanism in Android that al-
lows processes to discover and interact with services that are offered by
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other processes. Due to the reliability and flexibility issues with the stan-
dard IPC mechanisms, a customized version, called Binder, has been de-
veloped for Android to handle communications between processes. Binder
uses a combination of userspace libraries and kernel driver to implement
IPC effectively.

2.1.2.4 SELinux

Another important difference between the Android’s Linux kernel and
other Linux kernels (see 2.1.1 for others) is in the way they are imple-
mented. The Android’s security model relies on apps isolation through
creating sandboxes. While this prevents unauthorized access to each app’s
files by other apps, it can still grant world access to its files either intention-
ally or because of programming errors. Inappropriate permissions assigned
to an app or system files are shown to be the main source of vulnerabilities
in Android. Thus, the access control model of standard Linux kernel has
been modified and re-implemented in Android.

In the standard Linux kernel access controls follow a discretionary
mode, known as Discretionary Access Control (DAC). This implies that
when users are granted necessary permissions to access particular re-
sources, they can pass the same permissions and access levels to other
users. In a different access control model, called Mandatory Access Con-
trol (MAC), users’ access to resources conforms to a set of policies which
can only be changed by an administrator, and, thus, users are not allowed
to pass the acquired privileges to others. The Android’s Linux kernel has
been implemented using MAC access control mechanism and is known as
Security Enhanced Linux (SELinux). It isolates core system daemons and
user-installed applications in different security domains and defines differ-
ent access policies for each domain.

2.1.2.5 Code Signing

All Android applications, including system and user-installed apps, must
be signed by their developers (see 2.3). As these apps are written mostly in
Java, the same JAR signing method can be used to sign Android apps. One
important advantage of code signing is that operating system can check if
user-installed apps are coming from the same sources upon their updates
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by comparing their signing certificates. This is known as the same origin
policy in Android.

System apps are also signed by a number of platform keys. These keys
are generated and controlled by whoever maintains the Android version
installed on a particular device, including device manufacturers, carriers
or even users for self-developed open source Android versions. System
apps which are signed by a common platform key can share resources and
run inside the same process.

2.1.2.6 Multi-User Support

Android did not support multiple users in the earlier versions as it was
basically developed for smartphones that had a single physical user (see
2.1.2.1). However, it supports multiple physical users starting from An-
droid Jelly Bean (version 4.2) and is only enabled on tablets which are
assumed to be used by more than one user.

To support multiple users, Android assigns a unique UID and data direc-
tory (or system directory under /data/system/users/<UID>/ ) to each user.
Then, to distinguish apps for each user, it assigns a new effective UID to
each application when it is installed for a particular user. The effective
UID is obtained from the target physical user’s UID and the app’s UID in
a single-user system (the app ID). This way of managing users and apps
guarantees that applications will be limited to their own sandbox even if
multiple instances of those apps are installed by multiple users.

2.2 Dalvik Bytecode
Android programs are written mostly in Java, although they can contain
calls to binaries and other shared libraries known as native components
[23]. Once written, they are compiled to Java bytecode and, then, to Dalvik
bytecode. The final result is a Dalvik EXecutable (DEX) file with a .dex
format or an optimized version of it with an .odex format.

The Dalvik Virtual Machine (DVM) is a register-based machine which
executes Dalvik bytecode instructions (through a shared library, called lib-
dvm.so) and provides a Java-level abstraction for the Java components of
applications [24], while Java Native Interface (JNI) supports the use of na-
tive components. DVM is based on Just-in-Time (JIT) compilation and
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is replaced by Android RunTime (ART) after Android version 4.4, which
works based on Ahead-Of-Time (AOT) compilation and has led to signifi-
cant improvements in performance and memory consumption [25].

Analyzing Dalvik bytecode is simpler than machine code, it has a better
readability for human analysts, and it provides better semantic information.
Also, it is easy to be reverse engineered using tools like Dexdump [26],
Dex2jar [27], Androguard [28], and Apktool [29] to name a few. Thus,
many static malware analysis tools [9], deobfuscators [7] [20], and un-
packers [30] [31] have been proposed which extract their features directly
from Dalvik bytecode. For instance, key program features such as method
names, class names, field names, variables, and strings are very quick to
obtain from the .dex file and give useful preliminary information.

2.3 Android Application Structure
Android applications which are installed on the device are in the form
of application package files (or APK files) with .apk extensions [1]. In-
deed, they are compressed (or ZIP files) that contain both the apps’ source
codes, their resources and other relevant information. In particular, a typ-
ical APK file is consisted of a manifest file (explicitly named as Android-
Manifest.xml), a dex file (classes.dex), a resource file (resources.arsc) and
four main directories, including assets, lib, META-INF and res (Fig. 2.2).

The manifest file contains some fundamental information for each An-
droid application, including its package name, its components, list of per-
missions which may be requested to access protected system or app re-
sources, and, last but not least, hardware and software features each app
requires. An application can have up to four main components, namely
activities, services, broadcast receivers and content providers. Activities
are single and focused things each user can do. Thus, they are in form of
a single screen with a user interface. Services are components that do not
have any user interfaces and run in the background. Broadcast receivers
are responsible for reacting to system-wide events called broadcasts, and
content providers provide interfaces for apps’ data that are typically stored
in databases.

The dex file is an executable code of each application. Android pro-
grams are written in Java programming language though they can have
calls to binaries and other shared libraries known as native components
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Android Application

assets/

lib/

res/

classes.dex

AndroidManifest.xml

META-INF/

resources.arsc

Figure 2.2: The structure of a typical Android application.

[23]. Once written, they are compiled to Java bytecode, and, then, to
Dalvik bytecode. The final result is a Dalvik EXecutable (DEX) file in
.dex format or an optimized version of it in .odex format.

The resource file packages all application’s compiled resources such as
strings and styles which are stored in separate binary XML files. Three
types of resources are identifiable for an application, including colors,
strings and dimensions. Strings usually represent labels that are visible
in the user interface of the application while dimensions and colors show
sizes and colors of such interfaces respectively. Note that each resource
may have several configurations. Thus, the appropriate value is chosen
and assigned to a resource at runtime by the Android runtime based on the
configuration of the environment it is running on.

The assets directory bundles raw asset files with each application.
Sounds, user interface pictures and fonts are some files that can be typ-
ically found in this directory. Applications can take advantage of native
libraries through Java Native Interface (JNI). These apps do contain an
extra directory called lib with sub-directories for each supported platform
architecture.

Android applications’ resources, referenced either directly using the an-
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droid.content.res.Resources class or indirectly via higher-level APIs, are
stored in res directory. However, each type of resource (e.g., animation,
menu, image, etc.) is stored in a separate sub-directory. The META-INF
directory contains app’s package manifest file and code signatures similar
to JAR files. Android controls which apps are authorized to get permis-
sions with the signature protection level that is performed through APK
code signing.

Java code signing is performed by reusing and extending JAR manifest
files in order to add a code signature to the JAR archive. Each Android
application has a main JAR manifest file (MANIFEST.MF) whose entries
are app’s filenames and their corresponding digest values. Also, another
manifest file (with .SF extension such as CERT.SF), known as signature
file, is used in the process of signing which contains the data to be signed
and a digital signature. This signature is stored in the same directory as
a binary file with one of the .RSA, .DSA, or .EC extensions, depending
on the adopted signature algorithm (CERT.RSA). Android apps are com-
monly signed and verified by the official JDK tools for JAR signing and
verification, jarsigner and keytool commands [32].

2.4 Android Malware Evolution

The evolution of Android malware may be anticipated to be quite simi-
lar to desktop malware initially. However, Android’s great market share
as well as its openness and its unique security features have all provided
an interesting opportunity for the attackers. In addition, smartphones have
introduced new technologies that can lead to more diverse and bigger at-
tack vectors. For instance, mobile cellular data, high-quality cameras and
sensors and location-aware services are appealing launching points for at-
tackers [9]. All these reasons have made Android malware evolve faster
over time [33].

In this section, we provide the readers with an evolution timeline of An-
droid malware (Fig. 2.3) and some relevant information specific to each
year gathered from security threat reports of popular cyber security firms,
including F-Secure (Finish company), Kaspersky Lab (Russian company),
McAfee (American company), Symantec (American Company), Trend
Micro (Japanese company), and, finally, Avira (German company).

16



2. Background

Figure 2.3: The Android malware evolution over years.

2.4.1 2010 - Android Malware Comes into Existence
The first malware in Android operating system was first detected in August
2010 [34]. This Trojan family, known as FakePlayer, pretended to be a
media player for watching porn video clips in Android [35]. However,
it was just an app that sent SMS text messages (with 798657 as body)
to premium-rate numbers (in this case, 3353 and 3354 numbers) without
user’s consent (Fig. 2.4). It had an icon in its res directory (recall Section
2.3) which looked very similar to the legitimate Windows Media Player
application.

FakePlayer was an easy-to-analyze malware family with only 3 main
classes and almost 350 lines of code. It was specifically developed to tar-
get Russian smartphone users for two main reasons. First, Android official
market (known as Android Market in 2010) was not accessible world-wide,
and, second, money could be sent easily on Eastern European telecom car-
riers.

Later on, cyber security companies discovered the first spyware in An-
droid malware, called Tapsnake [36] [37]. Tapsnake was a Trojan em-
bedded into a game (Tap Snake) capable of leaking location information
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Figure 2.4: An excerpt of smali code extracted from one of the main Fake-
Player classes.

to a remote server every 15 minutes. It could also allow a third-party to
track user’s geographical location by installing another paid app, called
GPS Spy. Two key registration information, including an email address
and a key were required to be typed in both Tapsnake and GPS Spy to
enable geo-location tracking. These information were acquired by social
engineering techniques.

Geinimi was another newsworthy Android malware family initially de-
tected by Lookout at the end of 2010 [38]. This family was the most
sophisticated malware found by that time with innovative capabilities.
Firstly, it was a repackaged version of legitimate Android apps like Presi-
dent vs. Aliens (an educational app) and Baseball Superstars 2010 (a game
app) to name a few. Secondly, it made use of two anti-analysis techniques
to hide its malicious behavior, including network communication encryp-
tion and network communication code obfuscation. Thirdly, it had some
botnet-like capabilities with more than 20 commands implemented in its
source code. Since then, Geinimi has been found in a wide range of loca-
tions, ranging from unofficial marketplaces to official ones.

2.4.2 2011 - The Rise of Repackaged Malware

Malicious apps increased in number from 84 samples in 2010 to more than
1000 in 2011 [39] [40]. Also, inspired by the success of Geinimi in 2010,
repackaging benign apps was rapidly imitated by malicious apps from sev-
eral new families such as ADRD, Pjapps, DroidDream, DroidDreamLight,
Zsone, BaseBridge, DroidKungFu, jSMSHider, GoldDream and Anserver-
Bot [35] in 2011. In total, around 86% of malware specimens found in
2010 and 2011 were repackaged versions of legitimate apps [39].
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ADRD and Pjapps were the first Trojan families detected in February
2011. Both of these families could steal sensitive device information,
including International Mobile Equipment Identity (IMEI), International
Mobile Subscriber Identity (IMSI), device ID, line number, subscriber ID
and SIM serial number once special conditions were met. Later, they sent
this information to remote servers. These types of malware are commonly
known as Logic Bomb Trojans. ADRD could be activated once the op-
erating system started, the network connectivity changed or whenever the
device received a phone call. However, Pjapps only started execution when
the device signal changed. In addition to stealing capability, ADRD fam-
ily could change the device settings to enable/disable data connectivity in
order to send or receive information all of which would result in high data
usage. Also, Pjapps was able to send text messages, install a new applica-
tion and to add a browser bookmark.

DroidDream and DroidDreamLight were the next family of malware
discovered one and three years later which repackaged legitimate Android
applications to compromise the target device. Similar to the earlier de-
tected families in this year, they could steal sensitive information, includ-
ing IMEI, IMSI, device model, device language and country and leak them
to remote servers. DroidDreamLight could even steal information from
text messages, contact lists, call logs and Google account credentials. The
main difference between these two families was in the way they behaved
in the infected device. DroidDream tried to get root privileges at the first
step, after which It was able to manipulate the device settings, system files
and SD card. On the contrary, DroidDreamLight ran in the background
silently and leaked the sensitive information which were stored encrypted
in a configuration file.

Zsone was another malware family found exactly at the same month as
DroidDreamLight though with quite different characteristics. This Trojan
was developed to target Chinese users mainly. Once installed on the de-
vice, it could send text messages to premium-rate numbers related to sub-
scription for SMS-based services to charge the user. It also kept a record
of its sending status in an XML file. Incoming text messages from certain
numbers could also be intercepted by this family.

BaseBridge and DroidKungFu - both with several variants and stealing
capabilities - were the next families of Android malware detected in 2011.
Additionally, similar to DroidDream family, they first attempted to gain
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root privileges in the target device [41]. Once successful, they stole a va-
riety of information, including IMEI, device model and manufacturer and
OS version and sent them to remote servers. BaseBridge was also capable
of sending/removing text messages, dialing phone numbers and monitor-
ing phone usage. On the other hand, DroidKungFu could install/remove
any packages and modify the homepage of web browser without user’s
consent.

jSMSHider was the second malware family with big differences in be-
havior comparing with the earlier discovered families. It was a Trojan
which affected smartphones with a customized ROM. It could exploit a
vulnerability in these devices and install a payload onto the ROM to com-
municate with a remote server and receive operational commands. It was
then able to read, send and remove text messages (to hide its malicious in-
tent), install apps on ROMs, perform a silent install or update of the APK
and download an application from a URL.

Detected after jSMSHider, GoldDream was another logic bomb Trojan
with versatile stealing capabilities. It could record the date, time, message
body and the senders of text messages upon receiving messages. It could
also store the date, time and phone number once any calls were made or re-
ceived. In addition, it was able to make phone calls, send text messages and
install packages without user’s knowledge. Device ID, SIM serial number
and Subscriber ID were among the most important sensitive information
this malware family could steal from the compromised device.

AnserverBot was the third family with different behavior in contrast
to its predecessors. It first tried to lure the device user by showing fake
upgrade dialog boxes for the host app. It then installed the first payload
that could run silently in the background. Afterwards, a second payload
could be loaded and executed dynamically either by the host app or the
first payload. Finally, it could connect to the remote server to take the
commands. This family was one of the pioneers in using anti-analysis
techniques as well. First of all, most of the code in both payloads were
obfuscated. Second, AnserverBot had a mechanism to avoid the infected
application from being repackaged again. Last but not least, it could detect
the existence of three smartphone anti-virus software.
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2.4.3 2012 - Targeting User’s Pocket and Privacy

Similar to previous years, Android was by far the most commonly tar-
geted smartphone operating system in 2012, constituting 95% of unique
threats [42]. These threats were found mostly in Eastern Europe and Asia
though the number of threats in the rest of Europe and the United States
had increased from the previous year. This year witnessed 350,000 ma-
licious and high-risk Android apps comparing with less than 1300 mal-
ware in 2011 [43]. Also, they had an increase in the sophistication level.
Furthermore, 103 Android mobile malware families were discovered in
2012 [44].

While stealing users’ sensitive information - known as privacy leakage
- was still among the main goals of malware authors, the primary focus
changed significantly in this year. In particular, developing premium ser-
vice abusers and adware outnumbered other types of Android malware. In
general, 48.58% and 38.30% of detected Android malware in 2012 were
service abusers and adware [43] [45].

Commonly disguised as popular legitimate apps, premium service
abusers were designed to convince users to install them at the first step.
Later, they could charge smartphone user by sending text messages to
premium-rate numbers. Moreover, special variants could download other
malicious apps, and, also, steal information from infected devices. For in-
stance, variants of FakeInst and SMSBoxer families spoofed several pop-
ular Android games and social networking apps, including "Bad Piggies",
"Angry Birds Space" and Instagram [46] [47]. Also, Gappusin variants
downloaded other malicious apps and stole information from compromised
devices [48].

Aggressive adware - ranked as the second popular types of malware in
2012 - could also disclose user’s or device’s sensitive data to third-parties
by continuously showing advertisements to the smartphone user. These
malware posed a high privacy risk to users and could gain big profits by
selling users’ information to untrusted parties. For instance, variants of
Plankton family were able to collect personal information such as email
addresses and phone numbers, and, could later, forward them to several
third parties [49].
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2.4.4 2013 - The Evolution of Advanced Trojans
While premium service abusers and adware remained the most common
Android threats in 2013, four important changes happened all of which
affected the Android malware evolution. First of all, the number of smart-
phone users grew in 2013 most of which were less aware of security
risks of Android apps [44]. Second, Google’s official app store, known
as Google Play Store (introduced in 2012), superseded Apple’s App Store
and could become the largest smartphone app market at that time [44] [50].
This increase in popularity was later abused by malware authors. Third, an
important vulnerability, called "Master Key", was found in July 2013 that
allowed installed apps to be turned into malicious without user’s consent
nor knowledge [51]. Last but not least, several toolkits started to be sold
for trojanizing Android apps in underground markets [44] [50].

Android continued to be the most targeted smartphone operating system
in this year [50]. F-Secure and Trend Mircro reported 358 new Android
malware families and 1 million new Android threats in 2013 alone [50]
[51]. On the other side, malware authors put their focus on popular ap-
plications in online stores, especially games and social networking apps,
to maximize the number of victims [43] [52]. Thus, trojanized versions
of popular apps made up most of the additions to 2013’s list of Android
malware families [51]. In particular, advanced Trojans, adware and rogue
security apps were among special interests of malware developers. Fur-
thermore, spreading malware through email and fake websites were used
commonly.

Among Trojans detected in 2013, Stels, Obad, Dandro, Fakeguard,
Fakedefender and Pincer were the most popular ones. Stels was devel-
oped mainly to target smartphone users in Russia. Initially detected in
2012, F-Secure identified over 1,300 unique Stels samples that could be
divided into three major variants as of 2013. It was the first Android mal-
ware distributed via spam e-mails, and a bot that used Twitter to update its
C&C server addresses [44] [50]. Also, it was one of the pioneers developed
to target multiple platforms (Android and Windows). Stels could act as a
banking trojan and intercept incoming text messages to steal mobile Trans-
action Authentication Numbers (mTANs), thus defeating the two-factor
authentication method used to validate an online banking transactions [50].
In addition, it could leak sensitive device information, including IMEI and
IMSI.
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The second common Trojan, Obad, could exploit “Master Key” vulner-
ability to elevate its privileges at the first step [44] [50] [51]. Once ex-
ploited, malware developers were able to embed their malicious codes into
the modified apps. An interesting point was that malware developed this
way resembled legitimate applications in terms of their signatures [44].

Discovery of Obad Trojan revealed that mobile threat landscape had
evolved a lot since 2012 and that attackers had found new methods to com-
promise devices. For instance, Dandro was a Trojan developed using a
toolkit, called binder, which was available for developing Remote Access
Trojans (RATs). This malware began to circulate using email attachments
with which the remote attacker was able to perform a wide variety of oper-
ations, including sending and retrieving text messages, retrieving contacts
and call logs, acquiring the device location and using its camera to name a
few. Later, a variant of Fakeguard family was detected which was a repack-
aged version of a legitimate Korean app. Once installed on the device, the
app attempted to download its malicious code through sending update noti-
fications to users [44]. Fakedefender was another advanced Trojan and the
first Android malware that came into existence by leveraging security apps
on smartphones. This rogue security app tried to persuade users into pay-
ing a considerable amount of money to get rid of all non-existent (or fake)
threats from their device [44]. Finally, variants of Pincer and FakeKRBank
were found that stole text messages containing TANs similar to Stels and
were developed mainly to target users of the Commonwealth Bank [50].

2.4.5 2014 - The Emergence of Ransomware

Cybersecurity firms observed interesting changes in Android malware dur-
ing 2014. On the one hand, the number of variants per family dropped by
16%. In 2012, 38 new Android variants per family was detected. This
number increased to 57 per family in 2013, and it decreased again to 48 in
2014 [53]. One the other hand, 17% and 36% of Android apps were found
to be either malware in disguise or grayware. While not malicious by de-
sign, Android grayware could annoy users by doing unintentional activities
such as tracking user’s behavior [53].

This year was undoubtedly the first time where different types of An-
droid ransomware and bitcoin-mining malware were discovered [53] [54]
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[55] [56] [57]. At this period, cybercriminals looked at developing ran-
somware as a lucrative business, and bitcoins became the payment method
of choice by most new ransomware because of its strong anonymity. In
particular, some ransomware got the press, including Koler, Slocker, Sim-
plelocker, CryptoLocker, CryptoDefense and CryptoWall.

Koler was almost the first discovered Android ransomware [54]. It was
the mobile extension of "police-themed" Reveton ransonware. This app
was assumed to offer access to adult contents. However, once installed on
the device, it started to send notifications to scare the user into paying a fine
for supposed illegal activity [55]. Koler did not encrypt any files despite
its claims; it only disabled the Back button to keep the ransom demand
prominent.

Slocker - the first Tor-encrypted ransomware - could disable the Back
button as well. However, it had much more capabilities. For instance, vari-
ants of Slocker were able to encrypt images, document and video files as
well as communicating with a remote server via Tor network or SMS mes-
sages [54]. Simplelocker was a similar ransomware detected in June 2014
with file encryption capabilities. It employed an FBI social engineering
theme like the famous Porndroid ransomware [53] to deceive users. How-
ever, Porndroid could take the victim’s picture to display it later alongside
the ransom demand. Later on, other ransomware were also spotted which
made use of a Tor component such as Torbot, Dendroid, CryptoLocker,
CryptoDefense and CryptoWall [57].

Despite developing these advanced Android ransomware, malware de-
velopers began to explore other ways through which they could extort
money. Soon after that, they started to target Network-Attached Storage
(NAS) devices, where large quantities of files were stored. For instance,
Synolocker was developed to target Synology NAS devices by using a pre-
viously unknown vulnerability in Synology’s DiskStation manager soft-
ware. Once found its way into the device, it could encrypt all files, holding
them for ransom [53].

In addition to developing different types of ransomware, campaigns had
special attention to bitcoin-mining malware as well. As an example, Kage-
coin could start mining for bitcoins on Android devices as soon as it was
installed [56]. This allowed cybercriminals to use infected mobile devices’
computing resources to mine for bitcoins and other cryptocurrencies. Fur-
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thermore, infection resulted in shorter battery life, which could ultimately
lead to a shorter device lifespan.

2.4.6 2015 - Charging Users by Sending Text Messages
While ransomware remained frequent in 2015, sending text messages to
premium-rate numbers was the most common behavior observed among
the top 10 Android malware families [58]. In particular, SmsSend,
Slocker, FakeInst, GinMaster, GingerBreak, SMSpay, DroidRooter, Di-
aler, SMSKey and Coudw made up 25% of the total amount of Android
malware detected in 2015 [58].

SmsSend, FakeInst, SMSpay and SMSKey were popular Trojans that
charged users’ phone bills by sending text messages to premium-rate
phone numbers or a subscription-based paid service. Also, variants of
these families used randomization techniques to evade detection by an-
tivirus products [59]. Throughout this year, France was intensively at-
tacked by SmsSend Trojan family [58].

In addition to SMS-sending Trojans, Android security flaws were ex-
ploited to lunch new attacks against users in 2015 [60]. For instance,
Android’s MediaServer component took a lot of hits as its vulnerabili-
ties could be exploited to perform attacks using arbitrary code execution.
These attacks could force a device’s system to go on endless reboot in or-
der to drain its battery. They could even be used to render Android devices
silent and unable to make calls due to unresponsive screens [60]. Other
vulnerabilities exploited in this year were related to Android debugger and
installer components. A vulnerability in the former component was uti-
lized to expose a device’s memory content, while a hijacking vulnerability
in the second component gave hackers the ability to replace legitimate apps
with malicious versions in order to steal user’s information.

2.4.7 2016 - Looking for Super-User Privileges
Android vulnerabilities increased by 206% [61] in 2016; however, attacks
slowed for the first time since attackers faced security improvements in the
Android’s architecture [62]. Specifically, 4 new Android malware families
and 3.6K new variants were found in this year. On the other hand, new
ways were devised to bypass Android protection mechanisms [63]. For
instance, variants of the Tiny SMS Trojan were detected that were able to
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use their own window to overlay a system message warning users about
sending a text message to a premium-rate number.

The year’s most prevalent goal among Android malware was focused on
gaining as much privileges as possible [63] on the victims’ devices. This
was achieved using one or more than one application.

In order to obtain super-user privileges using one single application,
Trojans with almost unlimited capabilities were developed. These Trojans
could install other advertising apps or malware stealthily. Representatives
of this type of malware had been repeatedly found in the official Google
Play app store in 2016 (e.g., Ztorg.ad was a Trojan that pretended to be a
guide for Pokémon Go application).

App collusion was a mean to obtain the maximum level of privileges
using more than one application. Here, instances of app collusion were
discovered in a group of applications that used a particular Android SDK
[64] [65] [66] [67] with a wide range of permissions. Co-working together,
any of applications participated in the app collusion, could bypass the An-
droid OS limitations and respond to commands from a remote server via
the app with highest privileges. This could result in the maximum eleva-
tion of privileges and the most capable bot functionality based on all apps
that took part in the negotiation.

In addition to the attempts made in gaining super-user privileges, a con-
siderable growth was observed in ransomware [63]. This rise was caused
by the active distribution of two families of Android ransomware, includ-
ing Fusob and Congur. Fusob displayed the ransom demand on top of
other windows, thus making it impossible to use the device, while Congur
set or reset the device passcode and gave attackers administrator rights to
the device.

Malware products and services such as malware kits offered on Dark
Web marketplaces boosted the rise of Android malicious apps in 2016 as
well. For example, DroidJack was offered by different vendors on four
major marketplaces. This popular Remote Access Trojan (RAT) was sold
openly on the Clearnet and Dark Web. The Android bot rent service (BaaS,
or Bot as a Service) was also available for purchase. The bot, which was
available both in Russian and English, could be used to gather financial
information from Android smartphones [63].
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2.4.8 2017 - The Rise of Android Screen Lockers

New mobile malware variants grew by 54% in number in this year com-
paring with the previous one. However, the act of rooting Android devices
decreased as newer versions of Android OS provided increased functional-
ity [11]. Also, the proportion of Android devices not being encrypted fell
down for the first time. An analysis of Android smartphones revealed that
only 20% of devices were on the latest major release [11].

Once again, the easy availability of exploit kits and dark web sources
boosted the rapid creation of new Android malware [68] [69] [70] [71].
In particular, new ransomware rose by 36% in the second quartile [68],
largely from widespread screen-lockers [68]. Also, this year witnessed
serious vulnerabilities exploited to provide attackers with root privileges
(e.g., Dirty COW vulnerability exploited by ZNIU malware) [72].

2.4.9 2018 - Android Malware Predictions

Threats to mobile devices will increase significantly in 2018 by the
widespread usage of mobile phones for surfing the internet and the grow-
ing rate of mobile transactions [73]. However, Android will still be the
most popular target platform for attackers because of its high market share.
Specifically, more high-end APT malware will be discovered due to an in-
crease in the number of attacks, and, also, improvements in the security
technologies [74].

Security experts believe that advanced types of ransomware such as
RaaS will emerge targeting users’ sensitive information. in addition, An-
droid malware will explode on Google Play according to their inspec-
tions [75].

Hijacking cryptocurrencies will likely rise in number as well due to their
significant worth at the moment. Therefore, malware writers would try to
secretly mine cryptocurrencies without users’ knowledge [73].

2.5 Android Malware Research Datasets

This section presents the most prevalent Android malware datasets used
in academic research works in the recent years. Although several datasets
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might be available containing different Android malware families and vari-
ants, Malgenome [39], Drebin [76], Contagio Mobile Mini-dump [77],
PRAGuard [78] and AMD [79] are the most popular ones. Also, An-
droZoo [80] is one of the biggest available repositories of Android apps
released recently for Android application and security analysis.

2.5.1 Malgenome

Malgenome consists of 1,260 malware samples from 49 different families
discovered from 2010 to 2011. These specimens are obtained by care-
fully examining the security announcements, reports and blog contents.
From this collection, 5 families are discovered from official Android mar-
ket, while 35 families are found from alternative Android markets. Mal-
ware families in Malgenome are further investigated by the way they are
installed and activated.

Regarding installation techniques adopted, almost 41% of families (20
out of 49) contain samples which are repackaged versions of legitimate
applications. Thus, malware writers embed their malicious payloads af-
ter disassembling popular benign applications from official stores. 6% of
families (3 out of 49) contain drive-by download malware. This group of
malicious apps try to deceive users to download and install some risky ap-
plications mostly by in-app advertisements. 2% of Malgenome families are
installed through update attacks where malicious payloads are downloaded
at runtime to keep the whole payload enclosed until it is really needed.
41% of families (20 out of 49) contain standalone malware, and 18% of
them use more than one installation technique.

Malgenome families make use of 9 different activation techniques. The
most popular time where malware writers activate their malicious apps is
when the booting process is completed successfully. This is a perfect time
for malware to start its background services. Also, many malware speci-
mens can be found which are activated upon receiving a call or a text mes-
sage. On the other hand, few activation techniques (e.g., activating mal-
ware upon user’s clicks on the app icon or the smartphone’s home screen)
are less frequently adopted by malware families in Malgenome dataset.

A big amount of Malgenome malicious apps make use of three tech-
niques to compromise users’ devices. First of all, piggybacking legitimate
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applications on official Android markets is commonly observed in mal-
ware families. Second, communicating with remote C&C servers is used
in the majority of apps to execute the intended commands. Last but not
least, anti-analysis techniques in general, and obfuscation in particular is
applied to malware samples in order to hide their malicious payloads and
to obscure their semantics.

2.5.2 Drebin
Drebin malware dataset is a collection of 5,560 Android malware samples
from 179 various families collected from 2010 to 2012. This repository
contains all the specimens which were previously released in Malgenome
dataset. The authors of Drebin make use of two sets of features to iden-
tify Android malware from benign applications. The first set of features
are extracted from the app’s manifest file, while the latter set of features
are extracted from the disassembled code of application. Hardware com-
ponents, app’s components, requested permissions and filtered intents are
the features which are extracted from the manifest file, whereas restricted
API calls, suspicious API calls, used permissions and network addresses
are obtained from the disassembled code. Afterwards, an SVM classifier
is trained to tell apart malware from benign applications.

Analyzing the contribution of these features in the detection of Drebin
malware families reveals that few of them such as requested permissions
and suspicious API calls are not enough alone to distinguish malware from
benign applications as they are prevalent in both set of apps. On the con-
trary, some of them, including used permissions and restricted API calls
are only present in a small subset of families.

2.5.3 Contagio Mobile Mini-dump

Contagio Mobile Mini-dump dataset is part of a blog1 where you can up-
load your malicious apps, and, also, download the ones already available
here. It has started its activity from Jun 2011 and has been continuously
gathering and reporting new malicious apps since then.

As of October 2018, it contains 363 zip files which are presumably its
Android malware families which all add up to more than 5 GB in size.

1http://contagiodump.blogspot.com/
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From this number, 13 zip files or families cannot be downloaded success-
fully due to crashing. However, it contains a wide variety of Android mal-
ware from Trojans to spyware and ransomware, and, thus, have been used
in many research works till today.

2.5.4 PRAGuard

This dataset [81] is a collection of Android apps obtained from obfuscating
Malgenome and Contagio Mobile Mini-dump applications with 7 differ-
ent techniques. PRAGuard is composed of 10479 obfuscated applications
from more than 50 different malware families.

Obfuscation methods applied to the malicious apps are considered as
any modifications of either the app’s .dex file or its .xml files such as it
AndroidManifest.xml file. Thus, these approaches fall into two main cat-
egories, called trivial and non-trivial obfuscation techniques. From trivial
category, identifier renaming has been applied to change the key identi-
fiers of Android malware, including class names, method names and field
names, package names and the names of source files. From non-trivial cat-
egory, reflection, string encryption and class encryption have been utilized.

2.5.5 AMD

Android Malware Dataset (or AMD) contains 24,650 Android malware
samples classified in 71 different families and 135 sub-families (known as
varieties). These malicious apps are discovered in the period of 2010 to
2016. Malware family names are obtained by extracting a dominant key-
word from the outputs of anti-virus engines in VirusTotal [82], whereas
malware behavior groups (or varieties) are identified by applying a cluster-
ing technique based on the apps’ malicious payload mining.

AMD authors have categorized malware families in a variety of ways
similar to Malgenome dataset, including the way they are composed, in-
stalled and activated, the type of information they steal, their persistence
level, the way they communicate with the remote server, the privilege es-
calation techniques they use and the anti-analysis methods they adopt to
hide their logics.

AMD considers three different methods by which an Android malware
can be composed. Based on this, malicious apps are either written from the
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scratch (standalone malware) or they are repackaged within legitimate ap-
plications. The third group of apps are library apps that are composed by
embedding malicious components in the library code of legitimate apps.
Results show that 85 malware varieties (≈ 63%) contain standalone mal-
ware, 40 varieties (≈ 30%) consist of repackaged malware and only 9 va-
rieties (≈ 7%) contain library apps.

Android malware can be installed in two different ways according to the
AMD authors. In the first way, known as dropping, the malware specimen
tries to download and install some risky applications on the victim’s device,
whereas in the second way, called drive-by download, malware is delivered
to the target device either without user’s knowledge about the download
procedure or about its consequences. 76 different varieties are installed
by dropping comparing with only 15 varieties which are installed through
drive-by download.

In addition to event based activation methods considered by Malgenome
and Drebin authors, two extra activation techniques are observed in the
Android malware of AMD dataset. Based on this, an Android malware
is either activated by a host application or in a previously scheduled time.
The latter technique is highly prevalent in Android ransomware.

The types of information which are stolen by AMD Android malware
are related to the device or to the users themselves. International Mobile
Subscriber Identity (IMSI), network operator, International Mobile Equip-
ment Identity (IMEI) and device ID are some unique device information,
while browsing history, contact list, bookmarks and calendar events are
some personal information assigned to smartphone users. In AMD, 92
different malware varieties steal device information, whereas only 62 vari-
eties steal personal information.

AMD malware samples make use of two general techniques to be as
persistent as possible on the victim’s device. The first approach tries to
make the malware’s presence as stealthy as possible on the target device.
This is achieved in different ways, e.g., by blocking the appearance of spe-
cial items such as calls and text messages, by cleaning some clues such as
calls log and SMS history, by hiding the app icon, and, finally, by hooking
system APIs to mask the malware’s existence. The second approach pre-
vents the malware from being destroyed by the system, user and anti-virus
products. This is done by hiding the malware to be appeared in the de-
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vice’s administrator list, killing anti-virus processes or locking the device
to name a few.

Nowadays, malware samples try to escalate their privileges to have
the highest possible impact on the target device. Privilege escalation is
achieved either by acquiring admin privileges or by using root exploits.
Some privileged operations include locking the device, wiping device data
and changing its lock-screen pin code all of which make the malware
harder to remove and more persistent. For instance, Obad and Fobus, two
famous Android backdoors try to get admin privileges, while Lotoor and
Triada, two sophisticated malware families, try to obtain root privileges.

Communicating with a remote command and control server increases
the flexibility and functionality of the malware. Android malware that re-
ceive their commands from C&C servers are composed of two main mod-
ules, including a message builder and a command handler. Also, they use
a variety of formats to save and send their information to remote servers.
For example, SMSZombie and FakeAngry embed their information in text
messages and URL links, whereas SpyBubble and RuMMS encode their
information in XML and JSON file formats respectively.

AMD malware families make use of various anti-analysis techniques to
hinder their static or dynamic analysis. Identifier renaming, string encryp-
tion and dynamic loading of Android APK dex files are the most popular
methods taken by malware samples in this dataset though other less fre-
quent approaches such as evading dynamic analysis and using native pay-
loads are also adopted.

2.5.6 AndroZoo

AndroZoo is the biggest available dataset of Android apps released to
date [80]. Published formally in 2016 by the researchers in Université du
Luxembourg, it contains more than three million unique samples, adding
up to more than 20 TB in size. This collection has been created by crawl-
ing various Android app markets from 2011 and is continuously growing
in size since then. As of October 2018, AndroZoo has more than 7 million
Android apps. Each of the samples in this dataset are regularly analyzed
by numerous anti-virus products to know which applications are detected
as malware.
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The majority of samples (96.88%) are gathered from 3 main Android
app markets, including Google Play, Anzhi and AppChina. A recent study
shows 1%, 33% and 17% of these three markets are malicious apps based
on the results of at least 10 different anti-virus products [83]. In total,
AndroZoo contains apps from 13 different app markets including some
open-source repositories such as F-Droid [84].

2.6 Android Malware Analysis
Accurate analysis of Android malware is an important yet challenging task.
Easy reverse engineering of Android apps is a double sword. On the one
side, malware writers can make use of a wide variety of tools to embed
their malicious codes into legitimate and popular apps. On the other hand,
the same tools can be used to analyze Android malware rapidly and with-
out additional costs. Although most of these tools have flaws and cannot
precisely retrieve apps’ information, they can capture the majority of apps’
features that can be useful in their analysis.

In addition to visual inspection of malware using reverse engineering
tools, two other approaches have been frequently used for Android mal-
ware inspection in recent years. In the first approach, information flows
are used to model apps’ behavior, while in the second method, pattern min-
ing and data mining are used to characterize and study malware samples.
Therefore, in what follows, each of these three ways of Android malware
analysis are discussed briefly.

2.6.1 Reverse Engineering Tools

Android reverse engineering needs the main app’s source code (stored in
the .dex file) to be either disassembled or decompiled. Based on this, sev-
eral tools can be used that are presented in what follows.

2.6.1.1 Disassemblers

Apktool is probably the most popular tool proposed for Android apps de-
coding and disassembly [29]. Applications utilize code and resources,
known as framework resources, which are used by this tool to decode apk
files.
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Apktool has a number of advantages that have boosted its popularity in
addition to the great documentation it is accompanied with. First of all, it
is a multi-platform tool that can be easily installed on Linux, Windows and
Mac operating systems. Second, it can be used to decode Android apps’
resources to original form and rebuild them after modifications. Last but
not least, Apktool can transform (disassemble) the binary Dalvik bytecode
(.dex file) into the Smali code.

Baksmali is another well-known disassembler which uses dexlib library
to read .dex files and the StringTemplate library to generate the disassem-
bly. Baksmali’s syntax is based on Jasmin/dedexer and supports the full
functionality of the dex format. This tool is also supported with a well and
up-to-date documentation.

2.6.1.2 Decompilers

Android malware analysts may decide to convert .dex files to Java using
Java decompilers for further inspection. Decompiling process can be done
either directly or indirectly. In the former way, called Java decompilation,
.dex file (Dalvik bytecode) is converted to .jar file (Java bytecode) initially.
Then, any available Java decompiler tools can be used to convert Java byte-
code to Java code. In the latter way, known as Dalvik decompilation, .dex
file is converted to Java source code without any intermediate processing.

Dex2jar is a multi-platform tool that enables analysts to convert Dalvik
bytecode (DEX) to Java bytecode (JAR) [27]. Also, it allows them to use
any existing Java decompilers with the resulting JAR file, including Jd-
gui [85], JAD [86], Dare [87], Mocha [88] and Procyon [89] to access the
Java source code of each application.

DEX to JAR transformation loses important metadata that the decom-
piler could use. Thus, pure Dalvik decompilers skip this step, and, as a
result, they produce better output. However, there are not many choices
available for Android as it is for Java. DAD [90] and JEB [91] are two
open source and commercial Dalvik decompilers respectively which con-
vert .dex files directly to Java source code.

2.6.2 Information Flow Analysis
Any information flow has two critical points defining its direction, known
as source and sink. Sources are points within the program where sensi-
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tive information are collected and commonly stored in memory, whereas
sinks are points in which such data are leaked out of the program. In-
formation gathering and leakage are both performed using a wide range
of available Application Programming Interface (API) methods in the An-
droid platform. For instance, an information flow from getDeviceId() API
call to sendTextMessage() API call found in a malware specimen would
imply that it leaks our device’s unique identifier information to a remote
server by sending text messages. Thus, these points can significantly help
in understanding the underlying semantics of malware specimens.

Information flow analysis is a good and precise way of analyzing An-
droid malware as it reveals how and why apps use specific pieces of in-
formation. It provides meaningful traces that represent how sensitive de-
vice or user information are propagated amongst the variables (and com-
ponents) of a program.

Information flows have different variants. From one point of view, they
are divided to explicit and implicit flows. The former category analyzes
data-flow dependencies without considering the program’s control-flow,
while the latter considers the control-flow of the program. From another
point of view, flows are categorized as inter-app and intra-app based on the
type of communication. Inter-app flows are established between compo-
nents of different applications, whereas intra-app flows establish between
components of the same application.

Labeling sensitive data and tracking the way through which they prop-
agate in an Android program, known as taint analysis, in known to be an
effective way of extracting information flows. Taint analysis can be per-
formed in either a static or dynamic way. Static taint analysis has a rela-
tively low runtime overhead though it is imprecise. Also, it does not scale
well with the number of applications. Moreover, it can be bypassed eas-
ily using advanced obfuscation techniques. On the contrary, dynamic taint
analysis is more accurate as it models runtime behavior though it may miss
parts of the code that are not exercised explicitly. Also, it usually imposes
a high overhead to the system. Furthermore, apps can fingerprint dynamic
monitoring systems to evade detection, and, thus, hinder dynamic taint
analysis. FlowDroid [92], DroidSafe [93], FlowMine [94], CHEX [95],
LeakMiner [96] and AndroidLeaks [97] are the most popular static taint
analysis tools, while TaintDroid [98] and DroidScope [23] are the most
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precise dynamic taint analysis tools proposed for information flow extrac-
tion and Android malware analysis.

2.7 Anti-Analysis in Android Malware
The openness of Android operating, in conjunction with its high popular-
ity, has made it an attractive target for malware campaigns. As a reaction
to this and to alleviate security and privacy concerns, several app analy-
sis tools and services have been developed. Google has also joined this
attempt by introducing Google Bouncer [99], a service that automatically
scans Android apps to find potentially hidden malicious activities. Apps
scanning is performed either in a static or dynamic way. Although both of
these approaches provide useful information about apps behavior, they can
be evaded by advanced anti-analysis techniques, also known as app hard-
ening methods [100]. Anti-analysis products and services are commonly
provided as Software Development Kits (SDKs) with binary libraries.

Furthermore, anti-analysis techniques are used frequently by both mal-
ware writers and legitimate app developers in the Android platform. In the
first context, they are used to hide the apps’ semantics from analysts by in-
creasing the cost of reverse engineering, while in the second context, they
are used to protect apps from illegal cloning or copying [101] [102].

From one point of view, anti-analysis techniques used by Android apps
are divided into two main categories; those which are used to evade static
analysis, and the ones which are applied to hinder dynamic analysis of
apps [103]. Identifier renaming, string encryption, packing, code obfus-
cation and information hiding are some strategies which are used from
the first category. However, these methods may not necessarily be suc-
cessful in breaking the static analysis [104]. On the contrary, the tools in
the second category focus on detecting debuggers, virtual machines, sand-
boxes, emulators and other runtime monitoring tools. For instance, certain
types of malware may be found which stay inactive if they observe certain
identifiers they have already implanted in execution environment such as
browsing history or cookies in order to evade sandboxes [105].

From another perspective, anti-analysis methods are classified into three
major groups [106]. The first group of methods try to evade detection
using static information initialized to fixed values in the emulated envi-
ronment (e.g., Device ID, build version of Android SDK and the layout
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of routing table). The second group try to do so by observing unrealistic
behavior of different sensors (e.g., accelerometer, gyroscope, GPS), and,
the last group, do this based on incomplete emulation of the actual hard-
ware (e.g., by identifying the QEMU scheduling). Different behaviors of
QEMU scheduling points on an Android emulator and a real device has
already been studied and confirmed [106].

2.8 Data Mining Tools for Malware Analysis

The process of discovering hidden patterns from a big pile of data, or, in
other words, getting an insight about the data stored in databases is com-
monly known as data mining [107]. The data can be stored electronically,
and the search for patterns is commonly automated by computer. Data
mining has been used in a variety of domains, including many areas in
cybersecurity [107], and, specifically, in malware detection [108]. There
are basically two general approaches for mining meaningful data from big
databases.

Traditional data mining algorithms need to have the whole set of past
observations (referred to as the training set) to discover interesting patterns
and will be used later by machine learning algorithms to predict future
observations. Thus, to explore new patterns from a new set of observa-
tions, they need to be re-run. However, with the emergence of new devices
and technologies, and the amount and frequency of data generated by them
such as smartphones and the Internet-of-Things (IoT), traditional data min-
ing algorithms cannot be applied efficiently as they need to be repeated in
short intervals that is not feasible at a low cost.

Continuous and fast streams of data introduce big challenges to tradi-
tional data mining algorithms in particular, and machine learning methods
working based on them in general. Some of these challenges include but
not limited to concept drift [109], feature drift [110], temporal dependen-
cies [111], and restricted resources requirements, both in time and memory.
In addition, typical issues known in traditional data mining and machine
learning algorithms, including non-representativeness of training dataset,
missed feature values, underfitting, overfitting, and irrelevant features may
be found here. Thus, several attempts have been made in recent years to
introduce new methods for handling data streams.

37



2. Background

Data Stream Mining (DSM) is a variation of traditional mining tech-
niques which tries to explore patterns from continuously and rapidly evolv-
ing data. The two approaches are similar in terms of predicting a label for
new upcoming instances represented by a number of features known as
feature vector. However, DSM methods build their models from an incre-
mentally growing pool of training instances in contrast with a large static
training dataset which is commonly used by traditional data mining algo-
rithms [112]. Machine learning methods which are based on traditional
data mining are known as batch learning algorithms, and the ones which
make use of data stream mining are referred to as online learning algo-
rithms. Due to the extensive application areas of DSM, several tools have
been developed, including Massive Online Analysis (MOA) [113], Scal-
able Advanced Massive Online Analysis (SAMOA) [114], Advanced Data
Mining and Machine Learning System (ADAMS) [115], JUBATUS [116],
Vowpal Wabbit [117], StreamDM [118].

Online learning algorithms update their models over time (incremen-
tal learning) based on new coming instances compared to batch learning
methods that keep their built model static once it is extracted. Therefore,
online learning can save a significant amount of computational resources,
and, also, the time which is taken for extracting the models. Furthermore,
online learning algorithms do not require to decide on the number of in-
stances to be used for training which is critical in the performance of batch
learning algorithms. In return, they split the stream into disjoint chunks of
data known as landmark windows. A landmark can be defined as the num-
ber of observed instances up to the moment. Thus, once a new landmark is
reached all past instances are discarded. Another strategy is to discard one
instance at a time which is done by sliding windows.

As a specific area of data mining, pattern mining has been commonly
used to facilitate Android app analysis in recent years. One of the main ar-
eas where pattern mining algorithms have been applied is for smartphone
usage prediction [119] [120]. Most of the works in this area have focused
on mining behavioral patterns (or profiles) from Android applications us-
ing different features. For instance, a mining algorithm has been proposed
in [121] to extract temporal API usage patterns from client programs in or-
der to help developers having a precise and complete understanding of the
current libraries. A similar work [122] extracts time-constrained sequen-
tial patterns using mining algorithms to identify application usage patterns
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on smartphones. ApMiner [123] relies on association rule mining of an-
droid apps in the market to identify co-occurrences of permissions and API
methods. Based on this, it recommends specific permissions which need
to be added when developers use special API methods in their programs.

Another area in which pattern mining algorithms have been adopted is
malware characterization. For instance, in a recent work [124], informa-
tion on apps descriptions, together with sensitive data flow signatures, have
been used to characterize 3,691 malicious and 1,612 benign applications.

Commonly, data mining involves six different tasks from which classifi-
cation, clustering and association rule mining are the most important ones.
Classification is the process of generalizing a learned model or structure to
new data, while clustering is the process of exploring groups of data with
similar features without using a previously learned model [125]. Associa-
tion rule mining however, discovers possible relationships or dependencies
between different variables [126].

2.8.1 Classification

In machine learning and data mining, classification is the process of iden-
tifying the right category (from a set of categories) of a new instance (or
observation) based on a previously learned model built on the basis of a
training set of instances whose category is clearly known. When such a
training set with correct labels is provided, the task is considered as a su-
pervised learning process in machine learning [127].

Classification algorithms for malware detection and analysis are capa-
ble of classifying new specimens as either malicious or benign. Thus, they
are composed of two main steps, including model construction and model
usage. In the first step, several features such as API calls and strings are ex-
tracted to create a unique feature vector for each instance in the training set.
Then, feature vectors and real labels for different instances are passed to a
classification algorithm from which it can create a predictive model. Once
this model is built, the classification algorithm can automatically classify
a new sample as one of the two categories. To do so, it first extracts the
same set of features from the new instance and creates a feature vector.

Several features have been considered in the literature to train and test
classifiers for Android malware detection. These features are obtained ei-
ther through static or dynamic analysis. Permissions [128], sensitive API
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calls [129], call graphs [130] and control flow graphs [131] are some fea-
tures that have been used for malware detection based on static analysis,
whereas user interactions with apps is considered via dynamic analysis in
another work to achieve the same goal [132]. Hybrid approaches have
also been proposed to extract more precise features for Android malware
detection [133] [134] [135].

Feature selection is another important process in malware classification.
The process of selecting useful or informative features from a big amount
of features is known as feature selection. The main reason behind applying
this process after feature extraction is the redundancy of features. In many
cases, features do have overlaps. Thus, removing one feature does not
affect others significantly. Also, some features may found to be totally
irrelevant. Therefore, removing them will not have a significant negative
impact on the classifier’s performance.

Filter, Wrapper and Embedded are three main methods which are com-
monly used for feature selection once features are extracted. In the Filter
method, statistical approaches are used to choose the best subset of fea-
tures. Thus, features are scored using some specific criteria at the first
step. Then, they are ranked based on the acquired scores. Finally, a subset
of features which have scores higher than a threshold are used as candi-
date features. In the Wrapper method, the actual classification algorithm is
used to select the best possible subset of features. Here, different subsets
of features are chosen consecutively, and the performance of classification
on a sample training set is used to measure the quality of each subset and
to finally choose the best possible one. Although often leads to the op-
timal feature subset, this feature selection method is computationally ex-
pensive. Finally, in the Embedded method, best features are selected while
the model is being constructed by the classification algorithm. In terms of
computational complexity, this method is in between Filter and Wrapper
method and is considered as a limited greedy search algorithm.

2.8.2 Clustering

Clustering is the process of grouping instances into various categories
based on some measure of similarity. Since categories of instances is not
known previously, this task is considered as an unsupervised learning pro-
cess in machine learning. Thus, one advantage of clustering over classifi-
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cation is that it does not require a big amount of labeled instances as train-
ing samples. Also, it can help in exploring behavioral features. However,
clustering instances is not always straightforward.

In the malware detection area, a cluster contains one group of samples
with common behavior or characteristics, while being different from the
samples in other clusters. There are basically two well-known approaches
for clustering, including Partitioning and Hierarchical clustering. When
instances constitute regular shapes in the feature space, partitioning algo-
rithms such as K-means can be used for clustering. However, when in-
stances form irregular shapes in the feature space, hierarchical methods
are used. in the case of malware analysis, choosing an appropriate clus-
tering algorithm depends significantly to the extracted features and their
distributions.

Partitioning algorithms aim to group instances into clusters so that they
have the shortest distances to the centers of clusters to which they have
been assigned and the farthest distance to the instances in other clusters.
Hierarchical clustering however, seeks to build a hierarchy of clusters, and,
thus, falls into two main categories, known as Agglomerative and Divisive,
based on the way the hierarchy is created. In the former method, which is
a bottom up strategy, each instance is first considered in its own cluster,
and pairs of instances are merged into a bigger cluster if it is determined
that they have some similarities based on a specific criteria (called Linkage
criteria). In the latter method, which is a top down strategy, all instances
are initially considered in one single cluster. Then, this cluster is splitted
into different clusters based one similarities of instances as the algorithm
moves down the hierarchy.

2.8.3 Frequent Pattern Mining

Frequent pattern mining is a subset of a bigger process, known as associ-
ation rule mining, which is an important task in data mining. Association
rule mining looks for associations, correlations and causal relationships
among different items in transaction databases. Also, finding frequent pat-
terns that appear together is another important application of association
rule mining.

One of the most important applications of association rule mining is
to understand customers’ buying habits by finding the correlations among
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different items customers put in their shopping basket. However, it is also
applicable to some areas of cybersecurity such as fraud detection, web log
analysis and malware analysis to name a few.

Given a database with a number of transactions, frequent pattern mining
determines all patterns that are present in at least a percentage of transac-
tions. This threshold is known as minimum support value and can be set
either as a constant number or a fraction of the total number of transactions
in the database. A second important parameter is confidence which is an
indication of how often a rule is found to be true, or, in other words, how
much is the probability of observing two different items together in the
total number of transactions.

There are two popular approaches for frequent pattern mining, includ-
ing Apriori [136] and Frequent Pattern growth (FP-growth) [137]. The
Apriori algorithm starts finding frequent itemsets from individual items in
the database. It then extends these individuals to larger sets (called candi-
date generation) when they appear sufficiently often in the database. The
main idea behind this algorithm is that when any pattern is infrequent, its
superset should not be generated and considered as frequent. However, it
requires multiple scanning of the database. On the contrary, FP-growth
algorithm does not need candidate generation and avoids costly database
scans. It uses a compact Frequent Pattern tree (FP-tree) data structure to
extract frequent item sets.

2.9 Adversarial Machine Learning in Android
Malware Analysis

Adversarial machine learning is an important field of study which lies in
the intersection of computer security and machine learning [138]. The
primary goal of this field is to increase the robustness of machine learning
algorithms by facing them with different adversarial settings where attack
is a major component.

Attacks on machine learning algorithms are divided into two main
groups, known as poisoning attacks and evasion attacks which are per-
formed in the training and testing phases of learning algorithms respec-
tively [139]. Poisoning attacks try to influence, learn or corrupt the learn-

42



2. Background

ing model, whereas evasion attacks force the model to produce selected
adversary outputs.

Regardless of the type of attack, machine learning algorithms can be
either fooled or evaded using a wide range of techniques at different cost.
Recent studies also support that machine-learning-based algorithms can
be significantly degraded in performance using carefully-crafted malware
variants [104] [140] [141] [142] [143] [144].

The majority of these adversarial approaches challenge the robustness
of Android malware detectors (or classifiers) by applying different feature
manipulation techniques (e.g., removing, adding, modifying) upon which
the models are built or trained. Most of these processes are focused to
be performed in the testing phase in order to masquerade a malware as a
benign application or to produce misclassifications. Applying these meth-
ods are straightforward as decompiling, manipulating and repackaging An-
droid apps are all easy in Android platform [145] [146].

Easy repackaging of Android apps has thus forced security engineers to
come up with effective solutions when designing their Android malware
classifiers [143] [144] [147]. First of all, classifiers can be built based on
some features that are difficult to be modified without affecting the apps’
malicious functionality. This would leave less room for attackers to ap-
ply various kind of transformation techniques on features. Second, new
methods can be used to make the feature ranking (or features’ weights)
process totally unpredictable, and, therefore, to make it more difficult for
attackers to have any reasoning about the importance of features used by
classifiers. Last but not least, retraining classifiers with different random
set of features would increase their robustness against adversarial attacks.
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TriFlow: Triaging Android

Applications Using
Speculative Information

Flows

3.1 Introduction

The amount and complexity of malware in Android platforms has rapidly
grown in the last years. By early 2016, both Symantec and McAfee report
more than 300 malware families totaling over 12 million unique samples
[59] [148]. Every malware family (and, sometimes, every sample within
a family) may pose a different threat. The sheer number of apps available
in current markets, along with the ratio at which new apps are submitted,
makes impossible to manually analyze all of them. Automated analyses
also have their limitations and some techniques might require a substantial
amount of time per app [149]. This has motivated the need for a multi-
staged analysis pipeline in which apps should be initially triaged to allocate
resources intelligently and guarantee that the analysis effort is devoted to
those samples that potentially have more security interest.

One of the salient features of Android’s security model is its permission-
based access control system. Apps may request access to security-and
privacy-sensitive resources in their manifest file. These requests are pre-
sented to end users through permission dialogs at install time or, since
Android version 6 (Marshmallow), at runtime for a reduced subset of per-
missions. Requesting access to protected resources is a clear indicator of
risk and most triage systems for Android apps have relied quite heavily
on requested permissions (see, e.g., [150] [151] [152] [153] [154]), since
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they have proven effective to identify apps carrying malicious function-
ality. The majority of these approaches rely on metrics that combine the
prevalence (or rarity) of each permission in benign and malicious apps with
the criticality of the resources protected by the permission.

Using permissions alone to assess risk has important limitations [155].
Permission-based risk metrics might be highly inaccurate for two reasons.
First, apps are often overprivileged and many permissions requested in the
manifest might not be actually used during execution. Second, they assign
a risk to a particular permission (e.g., INTERNET) just because it could be
used as a vehicle for a malicious purpose, such as leaking out a piece of
sensitive data, without considering if sensitive data is actually being sent
or not. Determining risk using Information Flows (IFs), as done by the
approach introduced in this chapter, overcomes this limitation and pro-
vides a more accurate assessment of the app’s actual behavior. However,
IF analysis presents a number of challenges. Identifying flows in an app
involves a non-negligible amount of resources both in time and memory.
For instance, according to our experiments, it can take more than 30 min-
utes per app to extract IFs from at least half of the samples in the Drebin
dataset [156] using a relatively powerful computer (40 processors and 200
GB RAM). The situation may even be worse when analyzing apps with
sufficiently large call graphs. In those scenarios, the IF extraction might
not even be practical [157].

In this chapter, we describe TRIFLOW, an IF-based triage mechanism
for Android apps that attempts to overcome the issues discussed above for
permission-based systems, and, also, the limitations of existing IF analy-
sis tools. Since extracting IFs from an app is an unreliable and computa-
tionally expensive process, TRIFLOW introduces the notion of speculative
information flows. This means that TRIFLOW extracts some features from
apps and then predicts the existence of a flow based on them. Prediction is
done on the basis of a model that is previously trained using ground truth
obtained with flow extraction tools. Each predicted flow is then scored
by TRIFLOW in terms of its potential risk, which depends on the flow’s
observed prevalence in malware and benign applications. To do this, we
rely on the cross-entropy between the empirical probability distributions of
each flow in malware and benign apps. This provides a simple but sound
quantification of the intuition that an information flow is risky if it is fre-
quent in malware and rare in benign apps.
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TRIFLOW has been implemented in Python and has been tested using
a combined dataset of more than 17,000 apps. Our results suggest that it
is possible to predict information flows efficiently with prediction errors
remarkably small for the majority of information flows. The evaluation of
the flow scoring measure reveals that 75% of information flows have no
value at all for risk prediction, and only 1% of the remaining flows receive
high weights. This suggests that malicious behavior (at least in the samples
contained in our datasets) can be modeled using a relatively small subset
of all possible information flows.

We evaluate TRIFLOW by simulating a triage process in which apps
must be prioritized as they arrive. Experimental results demonstrate that
TRIFLOW outperforms existing permission-based risk metrics in all con-
sidered scenarios. Additionally, TRIFLOW provides an explicative report
that describes the flows that most contribute to the overall risk assessment.

In summary, contributions of this chapter can be listed as below:
• We introduce the idea of predicting the existence of a particular in-

formation flow using static features extracted from an app’s code.
We believe this idea might have potential beyond the scope of this
work, and, more generally, could be extended to predict the pres-
ence of other program artifacts whose precise identification requires
computationally expensive static or dynamic analysis procedures.

• We extend to information flows the notion of ”rare equals risky” that
has been largely explored and tested in the field of permission-based
risk metrics. Based on this, we design an information-theoretic risk
measure related to the cross entropy between the distribution of in-
formation flows in benign and malicious apps, thus quantifying how
informative a flow is.

• Finally, we make our results and our implementation of TRIFLOW

publicly available at

https://github.com/OMirzaei/TriFlow

to allow future works in this area to benefit from our research. TRI-
FLOW can be easily extended for new API methods and new infor-
mation flows appearing in upcoming versions of Android, and its
modular architecture facilitates its integration in existing risk assess-
ment frameworks.
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The rest of this chapter is organized as follows. Section 3.2 describes
in details our approach for fast triage of apps based on speculative infor-
mation flows. In Section 3.3 we present and discuss the results of our
evaluation, including our prototype implementation and the datasets used
(3.3.1). Additionally, we report: (i) the accuracy of the flow prediction
(3.3.2) and the flow weighting (3.3.3) mechanisms; (ii) the triage results
and the reports generated by TRIFLOW (3.3.4); and (iii) the efficiency of
the tool (3.3.5). In Section 3.4 we discuss a number of issues and limi-
tations of our approach. Finally, Section 3.5 discusses related work and
Section 3.6 concludes the chapter.

3.2 Approach

This section describes our approach for fast triage of Android apps. We
first provide an overview of our proposal in Section 3.2.1. We then de-
scribe its two key ideas: a probabilistic estimator for information flows
(Section 3.2.2) and a weighting scheme based on the a priori risk contri-
bution of each information flow (Section 3.2.3). This is later used to rank
apps and prioritize analysis.

3.2.1 System Overview

A high-level view of TRIFLOW is provided in Fig. 3.1. The system is first
trained using a dataset of benign and malicious apps. The goal of this phase
is to obtain the two items that will be later used to score apps:

(i) A predictive model that outputs the probability

θf(ϕ1, . . . , ϕn) = P [f | (ϕ1, . . . , ϕn)] (3.1)

of each possible information flow f present in the app given a feature
vector (ϕ1, . . . , ϕn) obtained from the app’s code.

(ii) A risk model consisting of a function I(f) that measures how infor-
mative each information flow f is considering its relative frequency
of occurrence in malware and benign apps.

The predictive model is estimated using both the feature vectors ob-
tained from each app and the ground truth, i.e., the actual information flows
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Figure 3.1: TRIFLOW Architecture.

present in the app; hence, the flow identification component in our archi-
tecture. Note that we also tag each flow with the app’s label, i.e., whether
it is benign or malicious.

Obtaining the score for an app (bottom part of Fig. 3.1) is done by sim-
ply multiplying each flow’s likelihood by its weight and summing up for
all flows:

score(a) =
∑
f

θfI(f). (3.2)

Note that this only requires extracting the feature vector from the app
and getting the θf and I(f) values. As described in details later, in TRI-
FLOW both models (prediction and risk) are implemented as look-up ta-
bles, so the overall scoring process is extremely fast.
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3.2.2 Predicting Information Flows

Let f = (s, k) denote an information flow from source s to sink k. We aim
at coming up with a predictor Pf(a) that outputs whether f is present in
an app a without actually performing an information flow analysis over the
app. Our emphasis is on efficient predictors, so Pf has to base its decision
on features that can be extracted very efficiently from the app. TRIFLOW

uses the presence of a call to the source s and another to the sink k in
the app code as features. Determining the set of sources and sinks called
by an app is straightforward. It can be done very efficiently by simply
decompiling the app’s DEX file and matching the resulting code against a
list of predefined sources and sinks.

We explored this idea using a probabilistic estimator as follows. Let
S(a) and K(a) be the set of sources and sinks identified in the code of
an app a. The set of all possible information flows in a is the product
set F̂(a) = S(a) × K(a); that is, for each possible source s ∈ S(a) and
sink k ∈ K(a), there is a potential flow f = (s, k) ∈ F̂(a). We now
assume that the occurrence of each flow f = (s, k) in an app is given by a
probability distribution Θ = (θ1, θ2, . . .) where θf = P [f = (s, k) | s, k].
The estimator can be obtained using a dataset D of apps (malicious or not)
as

θf =

∑
a∈D

indf(F(a))
∑
a∈D

indf(F̂(a))
, (3.3)

where indx(A) = 1 if x ∈ A or 0 otherwise, and F(a) is the set of actual
information flows of the app a extracted using an information flow analysis
tool. Note that the denominator in Eq. (3.3) is always greater than the
numerator, since the presence of a flow in an app requires a call to both the
source and the sink, and, therefore, such a flow will appear in the F̂ set.

Obtaining the θf estimator requires some computational effort since it
involves obtaining the actual information flows for each app. However,
once this task is done offline, the θf values can be stored in a look-up
table and used after extracting the sources and sinks present in an app.
Furthermore, the estimators can be incrementally refined when more apps
become available, i.e., it does not require to go again through the set of
potential and real flows for the already processed apps.
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3.2.3 Informative Information Flows

The second component of our risk metric is a measure that quantifies how
important a particular information flow is to distinguish malicious from be-
nign apps. To do so, we adopt an empirical approach based on the relative
frequencies of occurrence of information flows in both classes of apps. A
similar idea has been leveraged by previous permission-based risk metrics
such as [153] [154] [158], in which the risk of a permission depends on
how rarely it is requested by benign apps. In TRIFLOW we implement this
as follows. Let PM(f) and PB(f) be the probability of the information
flow f occurring in malicious and benign apps, respectively. We seek to
associate with f a weight I(f) satisfying two properties:

1. I(f) should be positively correlated to PM(f): the more frequent
f is in malware, the higher I(f). If f has never been observed in
malware, i.e., if PM(f) = 0, then I(f) = 0.

2. I(f) should be negatively correlated to PB(f): the more frequent f

is in benign apps, the lower I(f). More specifically, if PB(f) = 1
then I(f) should be 0.

Both properties are satisfied by the following scoring rule:

I(f) = −PM(f) log2 PB(f). (3.4)

Note that this score is essentially the probability PM(f) weighted by
the − log2 PB(f) factor, which implements the negative correlation with
PB(f). This factor can be interpreted in information theoretic terms as the
self-information (or surprisal) of f when looked at from the perspective of
benign apps (i.e., the PB distribution). Incidentally, this provides a sound
interpretation of I(f) in terms of the cross entropy between the PM and
PB distributions. Recall that the cross entropy between two probability
distributions P1 and P2 is given by

H(P1, P2) = −
∑
x

P1(x) log2 P2(x) (3.5)

and measures the average number of bits needed to identify an event
if a coding scheme based on P2 is used rather than one based on the true
distribution P1. Thus, I(f) can be seen as the contribution of flow f to
the cross entropy between the probability distributions of flows in malware
and benign apps.
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3.3 Evaluation

This section reports and discusses our results. In Section 3.3.1 we first
describe our implementation of TRIFLOW and the used datasets. The two
core components of TRIFLOW are evaluated in Sections 3.3.2 (informa-
tion flow prediction) and 3.3.3 (flow weighting). The effectiveness and
efficiency of the overall triage mechanism are finally addressed in Sections
3.3.4 and 3.3.5, respectively.

3.3.1 Experimental Setting

TRIFLOW has been implemented in Python. Our implementation decom-
piles the DEX file using Baksmali and then scans the code searching
sources and sinks in the smali representation. The list of sources and sinks
is provided as an input and, in our current implementation, taken from the
SuSi project [159].

To train and evaluate TRIFLOW, we have used two different data-
sets: (i) a set of real-world Android OS malware samples known as
Drebin [156], and (ii) a set of goodware apps downloaded from Google
Play at different points between 2013 and 2016. The malicious dataset
(Drebin) was originally collected by Arp et al. [156] as an extension of the
popular Android MalGenome project. The Drebin dataset contains 5,560
apps and about 171 malware families. Among other behaviors, the modus
operandi of many of these specimens is largely related to fraudulent activi-
ties such as sending SMS messages to premium rate numbers. The benign
dataset (GooglePlay) was retrieved from the Android official marketplace.
It is comprised of 11,456 popular free samples downloaded from differ-
ent categories, including popular apps such as Facebook, Google Photos,
Skype or MineCraft. Table 5.1 summarizes both datasets.

The evaluation is based on two distinct and non-overlapping splits of
the datasets, i.e., training and testing. The predictive model is extracted
using the former, while the latter is used to perform triage over unseen
apps. For training we retained 4,000 samples (71%) from Drebin and an
additional set of 4,000 (35%) from GooglePlay. The training set thus con-
tains the same amount of malware and goodware, i.e., a 1:1 malware-to-
goodware ratio. Although the occurrence of malware in official markets
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Table 3.1: Overview of the datasets used in this work. The upper part of
the table shows the source of our dataset together with the number of sam-
ples from each source. The bottom part shows the training/testing splits
used during cross-validation and the malware-to-goodware ratios.

Type Dataset Type Samples
Malware (MW) Drebin [156] Malware 5,560
Goodware (GW) Google Play Goodware 11,456

Total 17,016

Mode Split Ratio Samples

Modeling (Training) 4,000 MW 1:1 8,0004,000 GW

Triage (Testing) 1,560 MW 1:5 9,0167,456 GW

is much lower than the presence of goodware, undersampling the train-
ing set is a common practice to equally weight both classes when build-
ing the model [160] [161]. For testing, we increased the malware-to-
goodware ratio to 1:5, which is a common practice in other works in the
area [129] [133] [157]. All these splits were done randomly and using
a hold-out validation approach, i.e., the set of samples used for training
differs from those selected for testing.

We then used FLOWDROID [92] to identify data flows in all apps in
our dataset. We ran FLOWDROID1 considering all Android API sources
and sinks proposed in the SuSi project [159]. The extraction took place
on a 2.6 GHz Intel Xeon Ubuntu server with 40 processors and 200 GB of
RAM. We set a timeout of 30 minutes and between 40 GB and 100 GB of
RAM per app in FLOWDROID. Even with this configuration, FLOWDROID

could not finish the flow extraction process entirely for all the apps in our
datasets. This lack of reliability has been reported before [157] and is in-
dicative of the limitations (and computational cost) of techniques that rely
on extracted information flows. For instance, analyzing a popular gaming
app with more than 1 million installations in Google Play took about 90
GB of RAM and almost 2 hours of analysis time. Table 3.2 summarizes
the main statistics of the dataset used to train TRIFLOW. In total, we iden-
tified 7,802 unique flows in the malware dataset and 28,163 unique flows in

1Version from mid 2016.
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Table 3.2: Statistics of the training dataset. The size (in MB), number of
sources (src), number of sinks (snk), memory consumed (in GB), and time
(in seconds) are given on average per app. The amount of memory (in GB)
required represents the maximum average.

#Apps Size #Src #Snk #Flow Mem Time
4,000 MW 0.9 150.5 100.6 63.5 14.3 55.0
4,000 GW 6.2 223.1 124.4 255.5 88.3 132.1
8,000 ALL 3.5 186.8 112.5 159.5 51.3 93.6

the goodware dataset. This difference can be attributed to the fact that apps
in the benign apps set are, on average, much bigger in size and number of
data flows than the apps in the malware dataset.

3.3.2 Flow Prediction Accuracy

Our first experiment evaluates the accuracy of the flow predictor introduced
in Section 3.2.2. Our aim is to quantify the error made by the predictor and
also to determine if such an error is somehow different for malware than
for benign apps. Recall that θf provides the probability of flow f appearing
in an app if the flow’s source and sink are located in the app. We define the
prediction error for f in an app a as

error(f) =
⎧⎪⎨⎪⎩1 − θf if f ∈ F(a)

θf otherwise,
(3.6)

where F(a) is the set of actual information flows of a. The error defined
quantifies how far from the true value (i.e., 1 if the flow appears, and 0
otherwise) the prediction is.

In order to obtain a robust estimation of the prediction error, we applied
5-fold cross-validation to the two modeling (training) datasets described
in Section 3.3.1. We used non-stratified cross-validation, i.e., folds are
randomly built. Thus, each dataset is split into 5 folds of approximately
equal number of apps. In each of the 5 iterations we estimated θf using
4 out of the 5 folds and then obtained the error for all the apps in the
remaining fold.

Table 3.3 provides the mean, standard deviation and median values for
all the prediction errors obtained. In all cases, the results show that the
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Table 3.3: Flow prediction error statistics after 5-fold cross-validation us-
ing only malware, only benign apps, and both.

Dataset Mean Std. Dev. Median
Drebin 0.0861 0.1272 0.0278

GooglePlay 0.0361 0.0734 0.0094
All 0.0376 0.0784 0.0089

predictor works remarkably well. Interestingly, it seems to be slightly eas-
ier to predict flows for benign than for malicious apps. We elaborate on
this later on in this section when analyzing prediction errors for individual
flows. When combining both datasets, the average error is similar to the
one observed for goodware. This could be attributed to the fact that mal-
ware specimens in our dataset are often repackaged [156] (i.e., the mali-
cious app is built by piggybacking a benign app with a malicious payload),
so many of the flows seen in malicious apps are not malicious as they do
not originate in the piggybacked payload.

As for the provenance of the prediction error, Fig. 3.2 shows the er-
ror distribution for all flows in our datasets. We can observe that most
flows are actually very easy to predict with low error. For the malware
dataset, 4.31% of the flows (i.e., 337 out of 7802) are predicted perfectly
(i.e., their prediction error is 0); around 83% of the flows can be predicted
with an error lower than 0.1; and for around 90% of them the error is less
than 0.25. The most frequent source API methods observed in these flows
come from the TelephonyManager, Location, and Date packages. Sim-
ilarly, the most relevant sink API methods observed come from the Cam-
era.Parameters, and Log packages. For the goodware dataset, 1.04% of
the flows (i.e., 293 out of 28163) are also predicted with no error and the
figures are similar to the case of malicious apps (i.e., more than 90% of the
flows can be predicted with an error lower than 0.25). Here, we observe
that the most relevant source API methods come from Intent, Bundle,
File, AudioManager, and View packages, while the most relevant sink
API methods come from AudioManager, MediaRecorder, Log, Intent,
and Bundle.

On the other hand, we observed a number of flows that are very hard to
predict. In the case of malicious apps, flows from source methods used to
retrieve data from intents (e.g., getIntExtra(java.lang.String,int)) to sinks
related to media (such as setVideoEncodingBitRate(int)) are error prone.
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Figure 3.2: Distribution of the prediction errors for all information flows
in the two datasets. Note that the in both plots the y-axis is in logarithmic
scale.
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For benign apps, we observe difficult-to-predict flows from sources that
are used to retrieve PendingIntent before starting a new activity to sinks
which are commonly used to set an intent when interacting with widgets
(setPendingIntentTemplate(int,android.app.PendingIntent)). We did
not examine further the reasons for such errors in certain flows and decided
to leave this question for future work.

3.3.3 Flow Weights

We calculated the I(f) values for all the 31,175 unique information flows
obtained from the training datasets. Fig. 3.3 shows the cumulative prob-
ability distribution computed over the obtained values. Around 75% of
the flows receive a value I(f) = 0. This implies that either they have not
been observed in malware at all (i.e., PM(f) = 0), or they appear in
all benign samples (PB(f) = 1). The remaining 25% of the flows with
non-zero weights can be grouped into two distinct classes: those with
0 < I(f) ≤ 0.5 (around 24%) and those with 0.5 < I(f) < 1 (around
1%). Flows with I(f) > 1 are very rare and were observed mainly in
malware samples only.

Fig. 3.4 shows the average and maximum flow weight values seen when
grouping flows according to the Susi categories [159]. The distribution
shows that, on average, flows with the highest weights are those related to
unique identifiers (e.g., device and subscriber identities) and network in-
formation (e.g., hosts, ports and service providers) that end up being used
in networking operations (e.g., connecting to specific URLs). The next
most relevant weights belong to flows providing access to sensitive hard-
ware information, including the subscriber ID and the SIM serial number,
with sinks being methods send such data either via SMS or MMS. Table
3.4 contains some of the high-weighted information flows in terms of their
I(f) value. Overall, this provides an informative description of the be-
haviors (flows) observed in malware samples that do not appear in benign
apps.

Source API methods from sensitive categories that appear in mali-
cious flows (see Table 3.5) try to access sensitive unique identifiers, in-
cluding DeviceID, SubscriberID, NetworkOperator and SimSerialNum-
ber. Interestingly, sink API methods appearing in those flows often
check if unique identifiers start with a given prefix (String.startsWith()),
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Figure 3.3: Cumulative probability distribution of the flow weight values
I(f). Note that the x-asis is given in logarithmic scale.

log them (Log.v()) or try to open a connection to a remote server
(URL.openConnection()). Furthermore, source methods requesting the
settings of the WebView class (WebView.getSettings()) which is used to
display web pages or online contents within activities of an application
or to design a new web browser and, also, the properties of the System
class (System.getProperties()) which can be used to load files and li-
braries are popular in high-weighted flows. On the other hand, sink meth-
ods used to leak sensitive information through sending SMS messages
(SM.sendTextMessage()) are also common in such flows.

After some preliminary experimentation, the distribution of flow
weights forced us to slightly adjust the way the score is computed. The
reason for this is that apps that contain a large number of information flows
are penalized in their score since they accumulate a substantial number of
tiny weights. To remove the effect of such tails, TRIFLOW implements
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Table 3.4: Top ranked flows and their weight.

Source Sink I(f)
TM.getDeviceId() String.startsWith() 0.69
TM.getDeviceId() OutputStream.write() 0.26
TM.getDeviceId() Intent.putExtra() 0.52
TM.getDeviceId() String.substring() 0.28
TM.getDeviceId() URL.openConnection() 0.37

TM.getSubscriberId() String.startsWith() 0.88
TM.getSubscriberId() OutputStream.write() 0.24
TM.getSubscriberId() HttpURLCon.setRequestMethod() 0.25
TM.getSubscriberId() URL.openConnection() 0.42
TM.getSubscriberId() Intent.putExtra() 0.58

TM.getSimCountryIso() Log.i() 0.37
TM.getSimCountryIso() String.substring() 0.25

TM.getSimOperator() Log.v() 0.31

TM.getNetworkOperator() String.startsWith() 0.32
TM.getNetworkOperator() String.substring() 1.18

TM.getLine1Number() URL.openConnection() 0.20
TM.getLine1Number() Log.v() 0.52
TM.getLine1Number() String.startsWith() 0.53

TM.getSimSerialNumber() String.startsWith() 0.98
TM.getSimSerialNumber() String.substring() 1.09

gsm.SM.getDefault() gsm.SM.sendTextMessage() 0.82

SM.getDefault() SM.sendTextMessage() 1.81

NetworkInfo.getExtraInfo() Log.d() 0.68
NetworkInfo.getExtraInfo() String.startsWith() 0.45

WebView.getSettings() WebS.setAllowFileAccess() 0.67
WebView.getSettings() WebS.setGeolocationEnabled() 0.46
WebView.getSettings() WebS.setPluginsEnabled() 0.50

System.getProperties() String.substring() 0.45

PI.getBroadcast() SM.sendTextMessage() 1.28

HashMap.get() SM.sendTextMessage() 1.33
TM: TelephonyManager, SM: SmsManager, PI: PendingIntent,

HttpURLCon: HttpURLConnection, WebS: WebSettings.

two mutually exclusive strategies. The first one is simply to normalize the

59



3. TriFlow: Triaging Android Apps Using Speculative Info-Flows

MEAN

LO
G

FIL
E

NE
TW
OR
K

SM
S_
MM

S

AU
DIO

NO
_C
AT
EG
OR
Y

LO
CA
TIO
N_
IN
FO
RM
AT
IO
N

NETWORK_INFORMATION 0,0369 0,0074 0,0111 0,1767 N/A 0,044 N/A
CALENDAR_INFORMATION 0,0104 0,0096 0,0063 N/A N/A 0,0148 N/A
LOCATION_INFORMATION 0,0342 N/A 0,031 0,0054 N/A 0,0173 N/A
DATABASE_INFORMATION 0,0277 0,0157 0,022 0,0655 0,0032 0,0179 N/A
ACCOUNT_INFORMATON 0,0027 N/A N/A N/A N/A 0,032 N/A

UNIQUE_IDENTIFIER 0,0824 0,0079 0,3059 0,0919 N/A 0,0508 N/A
BLUETOOTH_INFORMATION N/A N/A N/A N/A N/A 0,0031 N/A

NO_CATEGORY 0,0284 0,0173 0,0382 0,0799 0,0097 0,0222 0,0088

(a)
MAX

LO
G

FIL
E

NE
TW
OR
K

SM
S_
MM

S

AU
DIO

NO
_C
AT
EG
OR
Y

LO
CA
TIO
N_
IN
FO
RM
AT
IO
N

NETWORK_INFORMATION 0,684 0,0096 0,0257 1,8161 N/A 1,1881 N/A
CALENDAR_INFORMATION 0,0421 0,0128 0,0075 N/A N/A 0,1284 N/A
LOCATION_INFORMATION 0,1403 N/A 0,1175 0,0128 N/A 0,1626 N/A
DATABASE_INFORMATION 0,2092 0,0544 0,0471 0,2336 0,0032 0,2766 N/A
ACCOUNT_INFORMATON 0,0028 N/A N/A N/A N/A 0,1056 N/A

UNIQUE_IDENTIFIER 0,5216 0,0187 0,4279 0,1536 N/A 1,0901 N/A
BLUETOOTH_INFORMATION N/A N/A N/A N/A N/A 0,0032 N/A

NO_CATEGORY 0,6032 0,4618 0,5292 1,3315 0,0376 1,1776 0,016

(b)

Figure 3.4: (a) Average and (b) maximum values of the flow weight distri-
bution with flows grouped by SuSi categories (sources are placed in rows
and sinks in columns). The group NO_CATEGORY refers to sources and
sinks classified as non-sensitive in SuSi.

Table 3.5: Most relevant sources and sinks from sensitive categories.
Source Categories Sink Categories

NETWORK_INFORMATION UNIQUE_IDENTIFIER DATABASE_INFORMATION LOG FILE NETWORK SMS_MMS

getSerialNumber() getDeviceId() getConnectionId() v() write() openConnection() sendTextMessage()
getSubscriberId() getSimSerialNumber() query() w() dump() setWifiApEnabled() sendPdu()
getSimCountryIso() getLine1Number() getSyncState() e() bind() selectNetwork() recordSound()
getNetworkCountryIso() getSubscriberId() getColumnNames() d() setFileInput() disableNetwork() sendData()
getNetworkOperator() getNumber() getColumnCount() i() openFileInput() setSerialNumber() sendDataMessage()
getAllMessagesFromSim() getIccSerialNumber() getColumnIndex() openFolder() openFileOutput() setCountryCode() setPremiumSmsPermission()
getWifiState() getPhoneName() startListening() openDownloadedFile() setNetworkPolicies() dispatchMessage()
getHost() getServiceProviderName() storeFile() sendto() setMobileDataEnabled() append()
getRemotePort() getVoiceMailNumber() install() readTextFile() setBandwidth() disableCellBroadcast()
getRemoteAddress() getAddress() notify() sendfile() setHostname() moveMessageToFolder()
getLinkAddress() setUserName() setOption() setDeviceName() setTextVisibility()
getNetworkPolicies() checkRead() registerListener()
getDefault() checkWrite() setScanMode()
getCellIdentity() processMessage()
getLatitude() setAuthUserName()
getLongitude() writeToParcel()
getInstalledApplications()
getAllPermissionGroups()

score by dividing the sum given in equation (3.2) by the number of flows
in the app. This provides a fairer way of comparing apps of different size.
The second approach consists of removing flows whose weight falls below
a fixed cutoff value. In the remaining of this chapter, we will report results
using the first strategy (i.e., score normalization), but our results suggest
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that both perform equally well.

3.3.4 App Triage
We next discuss the results obtained after scoring the apps in our dataset
with the combined risk metric described in Section 3.2.1. As discussed
before, such a risk score can be used to rank apps and prioritize analy-
sis. In addition to this, TRIFLOW provides an explanation of the risk score
similar to the one offered by Drebin [156] for the case of malware detec-
tion. In TRIFLOW, this consists of a break down of the score into the flows
that contribute the most to it and a presentation to the user grouped by
SuSi categories, which are generally easier to understand than the specific
source-sink pair.

We compared TRIFLOW with other quantitative risk assessment met-
rics proposed in the literature. To do this we implemented various rep-
resentative permission-based systems, including DroidRisk [162], Rarity
Based Risk Score (RS) [158], and Rarity Based Risk Score with Scaling
(RSS) [154]. As all these systems presented similar performance, in this
section we only report results for RSS due to space limitations.

3.3.4.1 Scoring and Prioritizing Apps

Ideally, a triage system should maximize the time an analyst spends ana-
lyzing potentially harmful applications. Due to this reason, in this work we
are primarily interested in reporting top ranked apps. Thus, we do not dis-
cuss the presence of other suspicious software such as grayware [33, 163]
or obfuscated malware; we refer the reader to Section 3.4 for a more de-
tailed discussion on this.

To quantify the performance of our triage system, we carried out the
following experiment. We assume that the market operator only has time
to manually vet a limited number of apps per unit of time (e.g., per day).
We simulate a vetting process at different operational workloads w, rang-
ing from 10% to 100% of the analyzed samples. More precisely, we as-
sume that the operator receives batches of N samples per minute and their
analysts are capable of processing 10%, 20%, . . ., 100% of them. This
constitutes a realistic scenario as some market operators can be more agile
than others. The same applies to antivirus vendors. For instance, out of the
310,000 new samples received every day, Kaspersky Labs only processes
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(a) RSS (Sarma et al. [154]).
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(b) TRIFLOW.

Figure 3.5: Results of the triage evaluation. Each plot shows the distribu-
tion of the fraction of malware correctly prioritized (y-axis) when a market
operator can only afford to analyze w% of the samples (x-asis) at each time
interval (e.g., daily-basis). Results are given for both RSS (left) and TRI-
FLOW (right). The red arrows within each plot represent the gain achieved
by each scoring system with respect to a random prioritization policy.

1% manually (2 per minute)2. For our experiments we set N = 10, though
the particular value is irrelevant for our analysis as it only constitutes a
scale factor.

For each workload, we prepare a batch of samples containing randomly
chosen samples from the joint goodware and malware datasets (recall that
the malware-to-goodware ratio for testing is 1:5, so on average there will
be 5 times more goodware than malware in each batch). Each sample
in the batch is then scored and the top w% ranked samples are given to
the analyst for a deeper analysis. We measure how many samples (in %)
in that final block of samples passed on to the analyst are malware. We
repeated this process 900 times, obtaining one percentage each time. For
each workload w, the distribution of values is given in the boxplots shown
in Fig. 3.5. We repeated the process for both TRIFLOW and RSS [154].
We also compared how both systems behave against a random ordering
of the batch of samples. The square (□) symbol in each plot of Fig. 3.5
denotes the average ratio of malware samples given to the human analyst

2http://apt.securelist.com
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after using a random prioritization policy, while the diamond (⋄) symbol
denotes the value given by the triage system. The red arrow joining them
represents the difference between both numbers, i.e., the time saved after
triaging the batch.

App: 4735ba2dfbdbb0f1e9a286da83155760c77dcce1bea9c4032ffd39792b251898.apk
Score = 2.78e-05
Score contributions:

1 [81.81 %] UNIQUE_IDENTIFIER -> LOG
[ 0.03 %] 1.1 TelephonyManager.getDeviceId() -> Log.w()
[ 0.05 %] 1.2 TelephonyManager.getSimSerialNumber() -> Log.w()
[ 0.04 %] 1.3 TelephonyManager.getSubscriberId() -> Log.w()
...

2 [ 6.95 %] UNIQUE_IDENTIFIER -> SMS_MMS
[ 6.95 %] 2.1 TelephonyManager.getSimSerialNumber() -> SmsManager.sendTextMessage()

3 [ 2.19 %] NETWORK_INFORMATION -> LOG
...

Figure 3.6: Snippet of a TRIFLOW report for a malware app belonging to
the Plankton family.

Our results show that in all cases TRIFLOW can prioritize more mal-
ware samples per batch (see upper quartiles in Figure 3.5b) than RSS for
every single workload value. Although not shown in the chapter, the results
for DroidRisk [162] and RS [158] are similar. Remarkably, our approach
performs better than RSS when the operators are overwhelmed. For ex-
ample, TRIFLOW performs under a workload of 30% equally than RSS
under a workload of 70%. Thus, the absolute number of malware samples
analyzed after triage is 83% with RSS and 92% with TRIFLOW. When
analyzing the overall improvement reported after a random triage (denoted
with □ symbol), we can observe that TRIFLOW not only improves on av-
erage with respect to RSS, but also with respect to the most challenging
cases (note that the distance between □ and the lower quartiles is notably
larger in TRIFLOW). The same conclusions can be obtained by looking at
the lower whiskers (worst cases without considering outliers), where a ran-
dom triage perform surprisingly better than RSS for workloads from 10%
to 60%.

3.3.4.2 Score Breakdown

TRIFLOW provides an informative break down of the score of an app in
terms of each contributing information flow. This helps the analyst to un-
derstand why an app receives a particular score and how much each poten-
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tial flow within the app contributes to it. The report is generated by sorting
the flows predicted in the app in descending order of their I(f) values and
then computing how much (in %) they contribute to the total score. Fig.
3.6 shows an excerpt of a report describing a malware leaking sensitive
information via SMS.

3.3.5 Efficiency

We now discuss the efficiency of TRIFLOW measured as the time required
to obtain the score for an app. The scoring process has two main steps:
extracting the sources and sinks of the app to construct the set F̂ of possible
information flows, and then computing the score by adding up the product
θfI(f) for each flow f ∈ F̂ . The first step requires identifying all existing
sources and sinks, whereas the second depends on the size of F̂ , i.e., the
number of sources times the number of sinks in the app. Fig. 3.7 shows
both quantities for all the apps in our datasets (GooglePlay and Drebin).
We consistently observe approximately twice the number of sources than
sinks in each app, with an average of 290.10 and 176.81, respectively. The
average size, measured as the number of potential flows, is 77,187.

Fig. 3.8 shows the overall time required to obtain the score for each
app as a function of its number of potential flows. On average it takes 56
seconds to triage the entire app. The minimum and maximum scoring time
for an app in our dataset is 0.01 seconds and 76.63 minutes, respectively.
Approximately 50% of the apps require less than 31 s; 80% of the apps
require less than 103 s; and 90% of the apps require less than 155 s. On
average, TRIFLOW requires 2.3 ms per potential flow in the app. Execution
times are not constant for a given size because not all potential flows will
have a non-null probability of occurrence. The higher the number of flows
with θf > 0, the higher the number of risk terms that have to be added
to the total score. This process is largely non-optimized in our prototype,
hence the substantial variability observed in Fig. 3.8.

When processing a large dataset of apps, most of the computation time
goes to the extraction of the information flows. Fig. 3.9 shows the com-
parison between the time taken by our approach and FlowDroid. We can
observe that FlowDroid is computationally more intensive than TRIFLOW.
In particular, we observe an improvement of about two orders of magni-
tude for smaller set of apps and about one order of magnitude for larger
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Figure 3.7: Number of sources vs number of sinks for all the apps in our
datasets.

sets. This is a natural advantage of using a probabilistic predictor with
respect to a precise tainting analysis, though it should only be used as an
estimation for fast risk analysis.

3.4 Discussion
We next discuss a number of potential limitations of our approach related
to its accuracy, the underlying risk notion, the validity of our results, and
attacks against the scoring system.

3.4.1 Accuracy
A crucial step in TRIFLOW is the accurate identification of the sources and
sinks present in an app. Our approach to do this is fast and robust (i.e., all
sources and sink identified are actually in the app). It decompiles each app
and looks into its smali code to find all sources and sinks. Still, it might
not be accurate and in some cases, it might miss some sources or sinks.
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Figure 3.8: Scoring time for all the apps in our datasets as a function of
each app’s size measured as the total number of possible information flows.
Note that the plot is in log-log scale.

The main cause for these inaccuracies is the use of reflection, particularly
if methods are invoked dynamically at runtime. Since this cannot be deter-
mined at compilation time, such sources and sinks will certainly be missed
by our approach. We do not know how much reflection is currently used
by apps to access sources and sinks and, therefore, we cannot measure the
extent of this limitation. However, apps leveraging reflection must use the
java.lang.reflect package, so signaling this might provide the user with a
warning about possible flows being missed by TRIFLOW.

3.4.2 Risk Notion

TRIFLOW scores apps according to the probable presence of interesting
flows. In this chapter, we have quantified how significant a flow is using
the mechanism described in Section 3.3.3, which captures how useful the
flow might be to identify malicious apps. While we believe this is a useful
risk metric, we also acknowledge that its use might easily lead to misin-
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Figure 3.9: Cumulative time (in seconds) required to extract all possible
information flows of a set of apps.

terpretations. Specifically, apps that score high should not be thought of
as “likely malware,” but simply as apps that possibly contain dangerous
information flows (dangerous in the sense that are more frequent in mali-
cious than in benign apps). During our experiments we came across some
benign apps that score higher than many malicious samples, including, for
instance, three known antivirus products (McAfee Mobile Security, NQ
Mobile Security, and Vodafone Protect).

Our flow weighting scheme could be easily extended to incorporate
other relevant flow features, or simply replaced by another measure of sig-
nificance provided by the analyst (e.g., different weights for different SuSi
categories). More generally, TRIFLOW should be viewed just as a risk
metric finer-grained than permissions, and in a real setting its use should
be complemented with other risk metrics that consider features of an app
other than permissions or information flows.

67



3. TriFlow: Triaging Android Apps Using Speculative Info-Flows

3.4.3 Datasets

The experimental results discussed in this chapter might be affected by
the number and representativeness of the apps in our datasets. While the
exact coverage of our datasets cannot be known, we believe they are fairly
representative in terms of different types of benign and malicious apps.
For the latter we relied on the Drebin dataset, which extends the widely
used Malgenome dataset and has been consistently used by most works
in the Android malware area in the last two years. In the case of benign
apps, we could only afford analyzing around 4000 applications, including
42 which are amongst the top most downloaded apps from Google Play
in 2016. The limiting factor here is the extraction of information flows
(with FLOWDROID, in our case), which requires a substantial amount of
computational resources and, furthermore, fails for a large fraction of apps.
This limitation is, in fact, one key motivation for our work. In any case, we
did our best to avoid selection bias by choosing apps of different sizes and
from different categories, prioritizing when possible those more popular
(in terms of downloads) in the Google Play market.

3.4.4 Evasion Attacks

A sensible goal for an adversary is to modify his app so that it receives
the lowest possible score. Since the score is monotonically increasing in
the number of flows, adding sources or sinks will never decrease the score.
To reduce the overall score an adversary will need to remove the use of
some sources or sinks (which may affect the app’s functionality), or just
make them undetectable (e.g., as discussed above in the case of reflection).
Alternatively, the adversary could try to replace current flows by others
that use sources and sinks that are functionally equivalent to the original
but receive a considerably lower weight. In our current implementation,
this would only be possible by relying on methods rarely used by malware.
We have not explored the extent of this limitation, and it is left for future
work.

Our approach is vulnerable to collusion attacks since it does not con-
sider information flows across apps (i.e., when the source is located in one
app and the data is passed on to another app that access the sink). This can
be seen as an extension to information flows of the classical permission

68



3. TriFlow: Triaging Android Apps Using Speculative Info-Flows

redelegation attacks [164], and can only be solved by extending individual
analysis to groups of apps (e.g., such as in [165, 166]).

3.5 Related Work
This section presents and discusses some relevant works which are related
to the topic discussed in this chapter, including information flow analysis
in Android and permission-based risk metrics for Android apps.

3.5.1 Information Flow Analysis in Android
Information flows provide meaningful traces that describe how data com-
ponents are propagated amongst the variables (and components) of a pro-
gram [167]. Such flows can be used to represent the behavior of a given
program, showing how and for what purpose programs are using specific
pieces of information [157]. Any information flow is characterized by two
main points defining the direction of the flow, known as the source and
the sink. Sources are points within the program where sensitive data are
obtained or stored in memory, while sinks are points where such data are
leaked out of the program [168].

Unlike traditional desktop operating systems, apps in Android have their
own life cycle and multiple execution entry points [169]. There are two
types of information flows in Android applications. Explicit information
flows analyze data-flow dependencies without considering the control-flow
of the program. In contrast, implicit information flows analyze the control-
flow dependencies between a source and a sink [170]. State-of-the-art anal-
ysis techniques (e.g., FlowDroid [92]) generally rely on explicit flows for
two main reasons. First, implicit data flows can be tracked at a reason-
able cost in most of the applications; and second, tracking such flows are
unnecessary for many systems [170].

From another point of view, information flows are categorized as either
inter-app or intra-app depending on the type of communication. Inter-app
communication, and, as a result, inter-app information flows are estab-
lished between components of two different applications [171, 172]. On
the opposite side, intra-app data flows are those established between dif-
ferent components of the same application [173]. In addition, information
flows are usually tracked using—static or dynamic—taint analysis [174].
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Table 3.6: Information flow analysis tools for Android.

Tool Type Information Flows Modeling Assumptions
Static Dynamic Explicit Implicit Callbacks Life-Cycle Native Code

FlowDroid [92] ✓ ✓ ✓ ✓ ✓

DroidSafe [93] ✓ ✓ ✓ ✓ ✓

CHEX [95] ✓ ✓ ✓

LeakMiner [96] ✓ ✓ ✓

AndroidLeaks [97] ✓ ✓ ✓

TaintDroid [98] ✓ ✓ ✓ ✓ ✓

DroidScope [23] ✓ ✓ ✓ ✓ ✓

Static taint analysis aims at detecting privacy leaks before the execution of
the application by constructing a control flow graph, while dynamic taint
analysis tries to keep track of such leaks in run-time or in a customized
execution environment [175].

There are several recent information flow analysis frameworks for An-
droid (see Table 3.6). Static taint analysis tools such as FlowDroid [92],
DroidSafe [93], FlowMine [94], CHEX [95], LeakMiner [96], and Androi-
dLeaks [97] have a relatively low run-time overhead with respect to other
information flow frameworks. However, suffer from some critical issues
that cannot be overlooked. On the one hand, they are imprecise as they
need to simulate run-time behaviors [92], and, as a result, suffer from a
high false positive rate [157]. On the other hand, some of these frameworks
do not scale well with the number of applications [93]. Finally, applica-
tions could use advanced obfuscation techniques to hinder the extraction
of information flows (e.g., [176]).

Similar to our approach, authors in MUDFLOW [157] use information
flow analysis to study how malicious and benign apps treat sensitive data.
MUDFLOW is able to establish a profile based on sensitive flows that al-
lows them to characterize potential risks that are typically observed in mal-
ware. Our system, in a way, is motivated by these findings and by the fact
that flow extraction involves a non-negligible amount of resources. In this
chapter, instead of simply analyzing the abnormal usage of sensitive in-
formation, we use speculative information flows to further triage Android
apps.

Dynamic taint analysis systems such as TaintDroid [98] and Droid-
Scope [23] generally compensate for the lack of precision of static tools.
However, these frameworks inherit the limitations of dynamic analysis sys-
tems, i.e., they may miss data flows from parts of the code not explicitly
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exercised [93, 157]. Furthermore, apart from the fact that they impose a
high run-time overhead [96], a malicious app could potentially fingerprint
a given dynamic monitoring system to evade detection [92].

Tainting analysis frameworks are generally based on sensitive API calls
tracking. Thus, it is paramount that this tracking considers the way apps
interact with the system services. In Android, this interaction is stateless.
This means that the taint analysis system has to take into account the life-
cycle of applications and model all possible entry points and callbacks
defined by the developer. Furthermore, sensitive API calls can also be de-
clared in a native library outside of the main Dalvik Executable (DEX) and
should also be modeled. Table 3.6 summarizes the most relevant informa-
tion flow analysis frameworks discussed in each of the aforementioned cat-
egories together with the type of components modeled from the Android
OS. Note that FlowDroid and DroidSafe are the only two static tainting
frameworks that consider all modeling assumptions simultaneously.

3.5.2 Permission-Based Risk Metrics for Android Apps

The development of metrics and systems to assess risk in Android apps is
an area that has received much attention in the last years. Works in this
area have generally relied on metadata obtained from the app’s package,
such as requested permissions, and from the market, including the number
of downloads, number of views, or the developer’s reputation. Permission-
based risk scores have been by far the most commonly explored because of
two key advantages: permissions are relatively easy to understand by users
and are compatible with the risk communication mechanism currently used
in Android. Furthermore, app developers can reduce risk by avoiding the
use of unnecessary permissions [158].

One of the seminal works in this area is [150], in which the authors
propose a system based on a number of rules that represent risky permis-
sions to flag apps. More recent contributions introducing permission-based
risk metrics include DroidRanger [133], DroidRisk [162], MAST [177],
WHYPER [178], RiskMon [152], MADAM [179], and the works of [180]
and [181]. The risk metric proposed in DroidRisk [162] is based on the fre-
quency and number of permissions an application request. In MAST [177],
a risk signal is created based on the declared indicators of the app’ func-
tionality, such as permissions, intent filters, and the presence of native
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code. The intuition behind this idea is that apps which are stronger in
terms of finding relations between these indicators impose a higher mag-
nitude of risk and, thus, should be flagged as malicious. WHYPER [178]
uses natural language processing techniques to reveal why an app may
need a specific permission, paying attention to permissions’ purposes.
MADAM [179] relies mainly on metadata from the market, including the
developer’s reputation and market provenance. Finally, RiskMon and the
work in [181] consider API traces as well, since some of them are critical
and do not require any permissions. Finally, [158], [154], and [153] as-
sign high risk scores to permissions or combination of permissions that are
critical and rarely requested by the apps in the same category.

As permission-based metrics are based on metadata of the app obtained
through static analysis, they can be imprecise and prone to errors. Other
metrics have tried to overcome this by looking into features other than per-
missions. For instance, RiskRanker [151] introduces a risk signal based
on root exploits, while [181] proposes a risk score considering static meta-
data, dynamic information from intents, components, network usage, and
the app’s behavior (e.g., whether an app launches other apps). Finally, the
majority of metrics, except [152] and [180], do not take into account the
security requirements or expectations of smartphone users. This is partic-
ularly important in practice, since risk ultimately depends on each user’s
preferences and execution context.

Our approach is complementary to most of these works. While we share
the goal of quantifying risk, our primary focus is not on malware detection,
but on prioritizing information flow analysis. Furthermore, our flow-based
scoring mechanism can be easily integrated with existing metrics based on
other risk factors to provide a more comprehensive risk assessment.

3.6 Conclusion

In this chapter, we designed and implemented a novel tool, called TRI-
FLOW, that automatically scores Android apps based on a forecast of their
information flows and their associated risk. Our approach relies on a prob-
abilistic model for information flows and a measure of how significant each
flow is. Both items are experimentally obtained from a dataset containing
benign and malicious apps. After this training phase, the models are used
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by a fast mechanism to triage apps, thus providing a queuing discipline for
the pool of apps waiting for a precise information flow analysis.

Our experimental results suggest that TRIFLOW provides a sensible or-
dering based on the potential interest of the app. Given the huge amount of
computational resources demanded by information flow analysis tools, we
believe this could be very helpful to maximize the expected utility when
dealing with large pools of apps. Additionally, TRIFLOW could also be
used as a standalone risk metric for Android apps, providing a comple-
mentary perspective to alternative risk assessment approaches based on
permissions and other static features. Finally, to encourage further research
in this area, we make our results and implementation available online.
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4
Behavioral labeling of

Android malware families

4.1 Approach overview
The popularity of the Android operating system and its openness have led
to a significant rise in mobile malware targeting this platform in recent
years [182] [183]. In this context, several works have addressed the prob-
lem of how to automatically characterize and label Android malware. This
pursues to main goals: to obtain a clearer understanding of the threat land-
scape in this area, and to assist malware detection, since this is generally
not possible without having a clear understanding of how the malicious
program behaves.

Despite its importance, malware labeling is not an easy task. The ma-
jority of labels (also known as families [15]) assigned to malware samples
by AntiVirus (AV) engines are not consistent with their real behavior [15].
One of the main causes for these inconsistencies is the lack of appropriate
standards for naming malware across different vendors [16]. In most cases,
these labels are assigned to malicious apps based on static information, in-
cluding data about the developer, the source country, code structures [17],
etc. While these features could be obtained quickly, they might be impre-
cise as they do not reflect how malware interacts with the victim device
and data. Moreover, they can be modified simply to bypass the labeling
system [18].

Due to the current inconsistencies which exists between malware family
labels and their real behaviors, several variants (sub-families) of apps have
recently been identified in different families [79, 184]. In addition, often
there is not a clear and meaningful separation between malware families in
terms of their behavioral profiles in various malware datasets. Many apps
are classified into one family even if they exhibit behaviors that could be
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attributed to various families. To overcome these limitations, in this work
we examine how to associate with each app (and family) a profile that can
be used to characterize its behavior.

The primary goal of this work is to explore how the family labeling of
popular Android malware is not always aligned with the actual behavior
of such apps. Our main observation is that apps in the same family can
behave differently; and, conversely, apps in different families can exhibit
almost identical behaviors. Although this may also happen in benign apps,
the focus of this work is on malware.

Our approach to characterize malicious apps is based on the set of all
real information flows extracted from each application using a precise
static taint analysis tool. Information flows are the basis of our character-
ization scheme as they can potentially reveal the behavior of applications.
Generally, each information flow, denoted by f = (s, k), is consisted of
two main points known as source (s) and sink (k). Sources are calls to API
methods which can be used to obtain sensitive information from the user
or the system, while sinks are calls to API methods which can leak such
sensitive data in different ways, such as logging those sensitive data, and,
then, sending them through a text message to a remote server.

Although flows are interesting and fine grained, they may provide lim-
ited information about the apps’ behavior. For instance, an application may
contain a sensitive flow logging our contacts into a file. However, this flow
cannot represent the general intention of the app unless it is analyzed at
a higher level, i.e. what other combinations of flows are used with this
sensitive flow. If this app sends these saved contacts to a remote server, it
will have a different behavior, and will thus impose a different amount of
risk comparing with the same app sending SMS advertisements to all the
logged contacts.

To overcome these limitations, our characterization scheme considers a
larger scale which is patterns of flows, P =< f1, f2, ..., fN >; or, in other
words, different combinations of information flows observed in each appli-
cation. Comparing with flows, patterns are even more interesting as they
may be seen as behavioral building blocks for applications. To achieve this,
we first extract combinations of flows that appear in each sample as this can
help to identify the real behavior of apps and the way they are treating sen-
sitive user or device information. To study whether or not each family can
be associated with a set of flow patterns, we leverage a well-known text
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Figure 4.1: Behavioral analysis procedure

mining and information retrieval technique and analyze behavioral simi-
larities among families (See Fig. 4.1).

Finally, we use cluster analysis to group the apps in our datasets ac-
cording to their behavioral profiles. We provide insights of the semantics
of each cluster by analyzing the flows of their apps in terms of SuSi cate-
gories [2], which provide a convenient way of summarizing the behavioral
profiles. Our results validate our initial hypothesis, and we show examples
of both: (1) apps in the same family that behave differently; and (2) apps
in different families that behave identically.

The rest of this chapter is organized as follows. Section 4.2 introduces
our analysis of information flow patterns in Android malware and how they
relate to family labels. Section 4.3 describes our approach to behavioral
clustering for apps using patterns of information flows and discusses the
experimental results obtained. Section 4.4 discusses potential limitations
of our approach and threats to validity, and Section 4.5 describes related
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work in this area. Finally, Section 4.6 concludes the chapter and proposes
some future works.

4.2 Frequent Information Flow Patterns in Mal-
ware Families

In this section we discuss our analysis of information flow patterns in An-
droid malware. We first describe the datasets we used in our work. Then,
we discuss the procedure used to extract information flows and the results
we obtained. Finally, we extract and analyze frequent patterns of informa-
tion flows (i.e. groups of flows that frequently appear together) and how
they correlate with family labels.

4.2.1 Datasets
We used two different datasets to carry out the experiments; a frequently
used Android malware dataset, known as Drebin [76], and a recently re-
leased one, called AMD [79].

The Drebin dataset contains 5,560 malware samples from 179 different
families collected between 2010 and 2012. The AMD dataset, released in
2017, consists of 24,650 apps from 71 families discovered between 2010
and 2016. In the AMD dataset, each family is further divided into sub-
families (or variants) based on different criteria, such as the way in which
apps are composed, installed and activated, to name a few. It contains
135 Android malware variants in total and covers a wide range of types of
malware, including trojans, ransomware and adware.

Furthermore, the family intersection of these two datasets is shown in
Fig. 4.2. As it is clear, there are 18 families and 739 apps in common
between these two datasets. From this amount, around 65% and 17% of
apps are from two popular Android malware families, DroidKungFu and
FakeInst. These two families are later divided into 6 and 5 different sub-
families in AMD dataset respectively.

4.2.2 Extracting Information Flows
We used FLOWDROID [92] to identify data flows in all apps of both
datasets. FLOWDROID is a static taint analysis tool that takes into ac-
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Figure 4.2: The intersection of AMD and Drebin datasets.

count the life cycle of an Android app, its components and its UI widgets.
We ran FLOWDROID considering all Android API sources and sinks pro-
posed in the SuSi project [2]. The extraction took place on a 2.6 GHz Intel
Xeon Ubuntu server with 40 processors and 200 GB of RAM. We set a
timeout of 30 minutes and assigned between 40 GB and 100 GB of RAM
per app. Even with this configuration, FLOWDROID could not finish the
flow extraction process entirely for all the apps in our datasets1. It could
successfully analyze 4,648 and 18,811 apps from Drebin and the AMD
datasets, respectively. To guarantee that the final dataset reflects the family
distribution of the original one, we sampled the results and retained 4,361
apps from Drebin and 14,297 apps from the AMD dataset.

In total, we extracted 16,634 flows from Drebin and 585,968 from the
AMD dataset. The distribution of flows across families has a high variabil-
ity, ranging from very few (just 1 or 2) to a maximum of 2,791 in the case
of DroidKungFu. The average number of flows per app is 26 in the Drebin
dataset. Eighty eight families had less than 100 unique flows; 9 families
had between 100 and 200 flows; and the remaining families had more than

1This low reliability has been reported before (see, e.g., [157, 185]) and is indicative of the limitations
of current techniques to extract information flows.
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200 unique flows. In the AMD dataset, each application had around 41
unique information flows on average.

4.2.3 Frequent Patterns of Information Flows

We used the set of information flows extracted from our datasets to identify
common patterns appearing in the apps that belong to the same family. To
do this, we applied a popular and fast frequent itemset mining algorithm
known as FPClose [186]. In our case, an itemset is a set of flows with a
specific support value. Note that this is an unordered set of flows which
cannot always be serializable, i.e., it is generally not possible to establish
which flow happens before or after another one. The support of an itemset
measures how many apps in the family contain such pattern (i.e., all flows
in the set). An itemset is called frequent when its support is greater than
or equal to some given threshold min(Sp). A frequent closed itemset is a
frequent itemset that cannot be found in any proper superset having exactly
the same support. This is exactly what we look for when characterizing
frequent itemsets of flows for each family, hence our choice of the FPClose
algorithm.

We relied on SPMF [187], an open-source data mining library spe-
cialized in pattern mining, to identify frequent closed itemsets. We set
min(Sp) = 0, which allows us to extract all patterns within each family re-
gardless of their support. Since our focus is on analyzing the relationships
between samples belonging to the same family, we discarded those fami-
lies with only one app. This left us with a reduced dataset of 4,204 apps
from 115 different families for the Drebin dataset. The AMD dataset was
not affected as all families have more than one sample. The FPClose algo-
rithm extracted 101,349 and 1,578,364 unique flow patterns from Drebin
and AMD, respectively.

The size of a pattern P , denoted size(P ), is the number of flows it
contains. Fig. 4.3 shows the distribution of pattern sizes in the Drebin
dataset. Pattern sizes range from 1 to 467 flows, with an average of 120,
though the distribution is multi-modal. The majority of patterns (32.91%)
have between 150 and 170 flows, while very few of them (0.3%) have more
than 190 flows. The longest pattern includes 467 flows, and 252 patterns
(0.2%) contain just one information flow. In the AMD dataset, pattern
sizes range from 2 to 879 flows with an average of 64 approximately.
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Pattern Size Distribution
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Figure 4.3: Distribution of pattern sizes (Drebin dataset).

The distribution of support values (again, for the Drebin dataset) is
shown in Fig. 4.4. Note that the support is given in absolute values (i.e.,
the number of apps in which the pattern is observed), and not as a percent-
age. Specifically, 13.94% of patterns have a support in the range [15, 25];
67.88% of all patterns have support in the range [5, 15); and 12.80% of
patterns have a support value less than 5. In AMD, 11% of patterns have
support in the range [15, 25) and 24% of patterns have support in range
of [5, 15); and, 3% of patterns have a support value less than 5. The key
finding here is that the majority of patterns are associated with very few
apps. It is unclear, however, if the sets of apps that can be characterized
by the same flow patterns belong, or not, to the same malware family. In
other words, do a particular set of flow patterns characterize with sufficient
precision the apps belonging to the same malware family? We explore this
question in the next section.

4.2.4 Malware Family Classification Using Flow Patterns

We now aim at studying whether each malware family in the two datasets
can be associated with a distinct set of patterns that represent the behavior
of the apps in the family. To do this, we leveraged a classic technique used
in text mining and information retrieval to quantify the utility of query
words to characterize documents: the so-called TF-IDF (Term Frequency-
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Figure 4.4: Distribution of patterns support values (in logarithmic scale)
in Drebin dataset.

Inverse Document Frequency) weighting scheme. The intuition behind it
is very simple: the utility of a term (word) to characterize a document is
proportional to how frequent the term is in the document, and inversely
proportional to how common the term is across documents. The TF-IDF
scheme has been widely used in domains other that text mining, including
as a step to do feature selection in malware classification [17, 124, 188].

We calculated the TF-IDF value for each pattern in our datasets consid-
ering each malware family as the retrieval unit. Thus, the TF term of a
pattern P in a family F is obtained as

TF (P, F ) = No. times P appears in F

No. patterns in F
. (4.1)

For the IDF term, we used the standard definition

IDF (P ) = log No. families
No. families with pattern P

(4.2)

Both terms are then used to measure the relationship between each pat-
tern P and each family F as

TF − IDF (P, F ) = TF (P, F )IDF (P ). (4.3)
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Figure 4.5: Similarity matrices between malware families using the cosine
similarity between the TF-IDF vectors associated with information flow
patterns. Each row and column in the matrix represents a family. Families
have been arranged in the same order from left to right and from top to
down, hence the maximum similarity observed along the main diagonal.
Family labels have been removed for better readability.

the result is a set of vectors {TF }, one per family F , in which each
component is the TF-IDF value associated with a particular pattern. Thus,
a pattern with high TF-IDF for a particular family is highly relevant in
characterizing that family, and vice versa.

4.2.5 Behavioral Similarity Among Families

Figs. 4.5a and 4.5b show the similarity between every possible pair of
families in both datasets. The similarity between two families is computed
using the standard cosine distance between their TF-IDF vectors. Thus, if
X and Y are the TF-IDF vectors of two families, their similarity is given
by the cosine similarity metric

sim(X, Y ) = X · Y

∥X∥2∥Y ∥2
=

∑n
i=1 XiYi√∑n

i=1 X2
i

√∑n
i=1 Y 2

i

. (4.4)

The results obtained reveal high similarity among a large number of
families that are, in principle, unrelated. They also supports the idea that
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(patterns of) information flows can be seen as building blocks to charac-
terize family behavior, and are useful to detect similarities and differences
across apps and families.

Raw information flows (as opposed to flow patterns) could also be used
as feature vectors to characterize each family. This has been previously
explored to, for example, classify malware samples into families [189].
However, our experiments in this regard discourage this approach. Using
flows as features increases the granularity of the described behavior, which
affects negatively the similarity between apps–and, therefore, families. In
particular, it results in similarity matrices in which too many apps in dif-
ferent families look too similar to each other mainly because they share
a limited number of flows. Instead, considering patterns of flows as fea-
tures translates into a characterization in which apps are similar only if
they share sets of flows, some of them quite large, that appear together.

4.2.6 Classifying Apps into Families

The TF-IDF modeling approach also provides an implicit procedure to
classify apps into families. Each app is associated a binary feature vec-
tor in which the j-th component is set to 1 if the flow pattern Pj appears
in the app, and 0 otherwise. The similarity between the app and each fam-
ily F is computed using the cosine metric between both vectors, and the
family with the highest similarity is chosen.

We used this procedure to obtain the predicted family for all apps in
both datasets. The average classification errors are 18.50% and 21.48%
for Drebin and AMD, respectively. However, errors are not evenly dis-
tributed across families. For example, for apps in 69 families from Drebin
(60%) and 44 families from AMD (64.70%), the classification error is 0.
Others exhibit errors around 1%, while for some families it is extremely
large (91%). These results reinforce the preliminary conclusions reached
before: in general, there is not a one-to-one correspondence between fam-
ily labels and behavior (expressed in terms of information flow patterns).
This means that some families contain apps that behave differently, and
also that there are apps that behave almost identically despite belonging to
different families. Both cases are the source of classification errors when
behavioral features such as information flow patterns are used to charac-
terize apps.
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Two natural questions are: how many distinct behavioral classes are
there and how they correlate with the family labels? We explore both points
in the next section.

4.3 Behavioral-Based Malware Clustering
In the preceding sections, it has been shown that malware family labels are
not relevant to describe the actual behavior of their member apps. How-
ever, it remains unclear whether or not malware samples have similarities
in their behavior. If it is so, it would be possible to cluster them according
to their behavior, offering groups of samples that behave similarly irrespec-
tive of their family. This section explores this idea.

Choosing an appropriate set of features and an efficient clustering al-
gorithm are both critical in clustering malware samples. These issues are
addressed in Sections 4.3.1 and 4.3.3, respectively. Afterwards, the clus-
tering results and the comparison with family labels is discussed in Section
4.3.4.

4.3.1 Behavioral Features
As discussed in the preceding section for malware families, we character-
ize the behavior of each sample using its information flow patterns. Each
sample is thus associated with a binary vector in which the j-th component
is set to 1 if the sample contains pattern Pj, and 0 otherwise. Our choice
of flow patterns instead of raw flows intends to reduce the dimensionality
and sparsity of the feature vectors. Even with the use of flow patterns, this
leads to vectors with 101 K and 1.5 M items per sample (see Section 4.2.3)
for Drebin and AMD, respectively. In addition, interpreting the behavior
encoded in such vectors would be hard, which will affect negatively the
usability of the resulting system.

To overcome this limitation, we replaced each flow by its SuSi category
[2]. Each category contains particular type of sensitive API calls (e.g.,
calls to extract the geographical location), which are helpful to understand
the underlying behavior omitting the specific API call used to achieve such
behavior. We consider a standard set of 17 source and 19 sink categories
(see Table 4.1), which results in 323 possible combinations of source and
sink categories. Note that NO_CATEGORY is both a source and a sink
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category containing flows that are not identified as sensitive. Therefore, the
behavior of each sample is represented by a binary vector of 323 features.

Table 4.1: Source and sink categories in SuSi ( [2])

Source Categories Sink Categories
UNIQUE_IDENTIFIER LOCATION_INFORMATION
LOCATION_INFORMATION PHONE_CONNECTION
NETWORK_INFORMATION VOIP
ACCOUNT_INFORMATION PHONE_STATE
FILE_INFORMATION EMAIL
BLUETOOTH_INFORMATION BLUETOOTH
DATABASE_INFORMATION ACCOUNT_SETTINGS
EMAIL AUDIO
SYNCHRONIZATION_DATA SYNCHRONIZATION_DATA
SMS_MMS NETWORK
CONTACT_INFORMATION FILE
CALENDAR_INFORMATION LOG
SYSTEM_SETTINGS SMS_MMS
IMAGE CONTACT_INFORMATION
BROWSER_INFORMATION CALENDAR_INFORMATION
NFC SYSTEM_SETTINGS
NO_CATEGORY BROWSER_INFORMATION

NFC
NO_CATEGORY

Tables 4.2 and 4.3 show the distribution of flows for both datasets.
Most malware specimens have source methods that access sensitive
information, including location, network, databases and unique iden-
tifiers. These are then leaked through various channels, most no-
tably through text messages or directly through the network. We ob-
served 6,040 flows equivalent to saving critical network information in
JSON files (e.g., WifiInfo.getMacAddress() → JSONObject.put()); 5,349
flows equivalent to saving location information in JSON files (e.g.,
LocationManager.getCellLocation() → JSONObject.put()); 2,598 flows
equivalent to saving unique identifiers into JSON files (e.g., Telepho-
nyManager.getSimSerialNumber() → JSONObject.put()); and, finally,
1,117 flows equivalent to saving database information in JSON files
(e.g., SQLiteQueryBuilder.query() → JSONObject.put()). Malware gen-
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erally sends such information, saved in JSON format, over the net-
work (2,980 flows such as JSONObject.getJSONObject() → HttpURLCon-
nection.setRequestMethod()) than through text messages (884 flows like
JSONObject.getString() → SmsManager.sendTextMessage()). Some mal-
ware families of banking Trojans have extra capabilities over the apps in
other families. For instance, variants of the BankBot malware (≈ 30%)
have the ability to record sound and log keystrokes as well as leaking sen-
sitive information through the network.

Table 4.2: Number and distribution of flows extracted from the applica-
tions in the Drebin dataset grouped by SuSi categories. Only flows whose
contribution is greater than 1% of the total are shown.

Source Category Sink Category #Flows Contribution (≈%)
NO_CATEGORY NO_CATEGORY 10,612 63.80
NO_CATEGORY LOG 1,996 12.00
NETWORK_INFORMATION NO_CATEGORY 778 4.68
UNIQUE_IDENTIFIER NO_CATEGORY 743 4.47
NO_CATEGORY NETWORK 406 2.44
NO_CATEGORY SMS_MMS 308 1.85
NETWORK_INFORMATION SMS_MMS 289 1.74
DATABASE_INFORMATION NO_CATEGORY 269 1.62
LOCATION_INFORMATION NO_CATEGORY 253 1.52
NETWORK_INFORMATION LOG 193 1.16

Table 4.3: Number and distribution of flows extracted from the applica-
tions in the AMD dataset grouped by SuSi categories. Only flows whose
contribution is greater than 1% of the total are shown.

Source Category Sink Category #Flows Contribution (≈%)
NO_CATEGORY NO_CATEGORY 395,635 67.51
NO_CATEGORY LOG 89,187 15.22
NETWORK_INFORMATION NO_CATEGORY 23,371 3.98
UNIQUE_IDENTIFIER NO_CATEGORY 15,238 2.60
LOCATION_INFORMATION NO_CATEGORY 13,408 2.28
DATABASE_INFORMATION NO_CATEGORY 9,126 1.55
NO_CATEGORY NETWORK 6,909 1.17
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4.3.2 Feature Selection

After inspecting the distribution of the values taken by some features
across all samples, it became clear that some of them had a prevalence
of either ones or zeros. Thus, they offered little help in highlighting be-
havioral differences between samples. We experimentally determined a
threshold percentage of prevalence among all samples of 0.99, thus intend-
ing to keep as many relevant features as possible. Figures 4.6a and 4.6b
show the amount of remaining features after removing those exceeding the
prevalence threshold in Drebin and AMD datasets. Based on this analysis,
we set the threshold to 0.99 so as to keep as many relevant features as pos-
sible. This left us with the 23 features for the apps in Drebin dataset and
21 features for those in AMD dataset, as listed in Table 4.4.

Table 4.4: Selected features for the Drebin and AMD datasets.

FEATURE DREBIN AMD
UNIQUE_IDENTIFIER → SMS_MMS ✓ ✓
UNIQUE_IDENTIFIER → ACCOUNT_SETTINGS ✓ ✓
UNIQUE_IDENTIFIER → AUDIO ✓ ✓
LOCATION_INFORMATION → LOCATION_INFORMATION ✓ ✓
ACCOUNT_INFORMATION → CONTACT_INFORMATION ✓ ✓
ACCOUNT_INFORMATION → AUDIO ✓ ✓
ACCOUNT_INFORMATION → EMAIL ✓ ✓
BROWSER_INFORMATION → BROWSER_INFORMATION ✓ ✓
NETWORK_INFORMATION → SMS_MMS ✓ ✓
NETWORK_INFORMATION → BLUETOOTH ✓ ✓
SYSTEM_SETTINGS → LOG ✓
SYSTEM_SETTINGS → LOCATION_INFORMATION ✓ ✓
SYSTEM_SETTINGS → BLUETOOTH ✓ ✓
SYSTEM_SETTINGS → BROWSER_INFORMATION ✓ ✓
FILE_INFORMATION → SMS_MMS ✓ ✓
CONTACT_INFORMATION → LOG ✓ ✓
DATABASE_INFORMATION → FILE ✓
SYNCHRONIZATION_DATA → FILE ✓ ✓
EMAIL → FILE ✓ ✓
EMAIL → AUDIO ✓ ✓
EMAIL → NO_CATEGORY ✓
CALENDAR_INFORMATION → LOG ✓ ✓
SMS_MMS → NO_CATEGORY ✓
NO_CATEGORY → AUDIO ✓ ✓
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(a) Drebin dataset

(b) AMD dataset

Figure 4.6: Feature selection trials for different values of threshold.

4.3.3 Clustering
We considered k-means as clustering algorithm using the Euclidean dis-
tance, as it is one of the oldest and most widely used unsupervised learn-
ing algorithms [190]. k-means is a heuristic algorithm which partitions a
dataset into a number of clusters by minimizing the sum of squared dis-
tances between each pair of the clusters. Despite its benefits, it has two po-
tential shortcomings: it has a super-polynomial execution time in the worst
case, and the solution found can be arbitrarily bad compared to an optimal
clustering [191]. To overcome these issues, we leveraged an optimal vari-
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ant of k-means, known as k-means++ [192], in which initial values (seeds)
are set so the algorithm finds an optimal solution in logarithmic time.

One key aspect when using k-means++ is determining the target amount
of clusters, which can be done by using a clustering evaluation method.
The basic idea behind clustering evaluation methods is to choose the num-
ber of clusters that optimize a specific criterion. The so-called elbow
method is one of the most popular techniques and can be used with var-
ious clustering quality criteria, including distortion, Silhouette [193] and
Calinski-Harabasz [194]. We used the elbow method using the distortion,
which tries to find the optimal number of clusters by minimizing the av-
erage sum of squared distances to each cluster’s centroid. Our choice is
motivated by its speed, as it proved to be much faster than all others and
this turned out to be critical during our experimentation. Figures 4.7a and
4.7b show the results of this method over the two datasets, which yielded
59 and 22 clusters for Drebin and AMD, respectively.

4.3.4 Behavioral Relevance of Clusters and Relation to
Families

After clustering the samples in each dataset using the optimal number of
clusters determined above, we addressed two separate questions: are these
groups meaningful from a behavioral point of view? Are they linked to
current family labels?

Figs 4.8 and 4.9 show the centroids of all clusters for Drebin and AMD
datasets considering their features at stake (recall Section 4.3.1). As it
can be seen, each cluster holds a different combination of prevalence
among all features, thus confirming that clusters are behaviorally differ-
ent. It is notable that some features are present in most clusters. For ex-
ample, LOCATION_INFORMATION → LOCATION_INFORMATION is
prominent in 43 clusters of Drebin and 15 clusters of AMD. Also, AC-
COUNT_INFORMATION → Email is heavily present in 25 and 9 clusters
of Drebin and AMD datasets respectively. Here, AUDIO, SMS_MMS and
FILE appear as the most common sink categories among all clusters in
both datasets. On the other hand, there are features which are specific to
a limited number of clusters. For example, CALENDAR_INFORMATION
→ LOG is highly frequent in cluster 42 and also present in cluster 23 of
Drebin exclusively. As another example, NETWORK_INFORMATION →
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59

Elbow Point

(a) Drebin dataset

Elbow Point

22

(b) AMD dataset

Figure 4.7: Elbow evaluation to select the optimal number of clusters.

BLUETOOTH is highly present in cluster 11 and is frequent in cluster 20
of AMD specifically.

To study the connection between clusters and family labels, we ana-
lyzed the distribution of original families into our behavioral-based clus-
ters (Figs. 4.10a and 4.10b). As it can be seen, only a fraction of families
(e.g., FakeLogo in Drebin and Boxer in AMD) have all their samples in
a single cluster. On the contrary, in most cases families are spread across
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Figure 4.8: Centroids obtained after clustering the Drebin dataset.
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Figure 4.9: Centroids obtained after clustering the AMD dataset.

clusters, and, conversely, most clusters contain samples of many families.
From another perspective, we have also measured (Figs. 4.11 and 4.12)

the number of clusters in which each family is present. The higher the
amount, the more behavioral profiles exist in that family. In this regard,
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4. Behavioral labeling of Android malware families
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Figure 4.10: Distribution of samples into clusters.

smaller families had commonly one behavioral profile, and, therefore, were
classified into a single cluster. On the contrary, we observed more behav-
ioral differences in large families. Thus, DroidKungFu, GinMaster, Base-
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Bridge and Plankton families from Drebin dataset are scattered across 34,
26, 22 and 16 clusters, respectively. Similarly, the apps from Airpush,
Dowgin, Youmi and Kuguo families of AMD dataset are present in 22,
19, 16 and 15 different clusters. However, there are some exceptions to
this general pattern. For instance, the Iconosys and FakeDoc families of
Drebin, with 151 and 132 apps, respectively, have fewer behavioral dif-
ferences than families such as Glodream (44 apps) or Plankton (59 apps).
Furthermore, BankBot and SlemBunk of AMD dataset, two well-known
Trojan-Banker families, each of them with 323 and 127 applications, had
only 5 behavioral profiles. SimpleLocker and Fusob, two popular ran-
somware, each of which with 98 and 965 apps had only 3 and 2 various
behavioral profiles respectively. Finally, a Trojan-Spy family, known as
Mecor, with 1,383 apps had only 3 types of behavioral profiles. All these
findings support the claim that current family labels might be unrelated to
the real behavior of their samples.

4.3.5 Examples
We next discuss examples belonging to the four possible cases depending
on apps behavior (i.e., same/different cluster) and their classification (i.e.
same/different family). Naturally, the case in which apps behave differ-
ently and belong to different families would not lead us to any conclusion
about the behavioral relevance of families, and, therefore, we focus on the
remaining cases.

4.3.5.1 Same Family, Same Behavior

There are applications that belong to the same family and are classified in
the same cluster. This reduced subset represents those cases in which the
concept of family is related to the actual behavior. Table 4.5 shows three
examples of this case from Drebin dataset along with an some of their
information flows. The two apps from FakeInstaller family are Trojans
which request four sensitive permission upon installation and try to leak
smartphone’s sensitive information through the network. The apps from
Yzhc family are again Trojans which try to call API methods that provide
access to information about the telephony services on the device. Applica-
tions can use these methods to determine telephony services and states, as
well as to access some types of subscriber information. Finally, malware
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Figure 4.11: Number of clusters in which each family of the Drebin
dataset is present.
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Figure 4.12: Number of clusters in which each family of the AMD dataset
is present.

samples from ExploitLinuxLotoor family are repackaged apps which upon

installation try to root and exploit the device. Similar examples are also

found in the AMD dataset.
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Table 4.5: Examples of samples from the same family of Drebin dataset
exhibiting similar behaviors.
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pp
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Flows in App 1 A
pp

2

Flows in App 2

Fa
ke

In
st

al
le

r

db
c4

b0
35

...
4e

8e
.a

pk

UNIQUE_IDENTIFIER → LOG:

02
81

dc
af

...
46

83
b.

ap
k

UNIQUE_IDENTIFIER → LOG:
TelephonyManager.getLine1Number() → Log.v() TelephonyManager.getLine1Number() → Log.v()

NETWORK_INFORMATION → LOG: NETWORK_INFORMATION → LOG:
TelephonyManager.getSimOperator() → Log.v() TelephonyManager.getSimOperator() → Log.v()
TelephonyManager.getSimCountryIso() → Log.i() TelephonyManager.getSimCountryIso() → Log.i()

UNIQUE_IDENTIFIER → NO_CATEGORY: UNIQUE_IDENTIFIER → NO_CATEGORY:
TelephonyManager.getLine1Number() → Log.v() TelephonyManager.getLine1Number() → Log.v()

NETWORK_INFORMATION → NO_CATEGORY: NETWORK_INFORMATION → NO_CATEGORY:
TelephonyManager.getSimCountryIso() → String.substring() TelephonyManager.getSimCountryIso() → String.substring()

NO_CATEGORY → LOG: NO_CATEGORY → LOG:
HashMap.get() → Log.d() HashMap.get() → Log.d()
HashMap.get() → Log.v() HashMap.get() → Log.v()
HashMap.get() → Log.i() HashMap.get() → Log.i()

NO_CATEGORY → NO_CATEGORY: NO_CATEGORY → NO_CATEGORY:
HashMap.get() → String.substring() HashMap.get() → String.substring()
HashMap.get() → HashMap.put() HashMap.get() → HashMap.put()

Y
zh

c

c7
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0a
f7

...
39

38
.a

pk UNIQUE_IDENTIFIER → LOG:

7a
21

ca
ba

...
b0

21
.a

pk UNIQUE_IDENTIFIER → LOG:
TelephonyManager.getDeviceId() → Log.v() TelephonyManager.getDeviceId() → Log.v()
TelephonyManager.getLine1Number() → Log.v() TelephonyManager.getLine1Number() → Log.v()
TelephonyManager.getSimSerialNumber() → Log.v() TelephonyManager.getSimSerialNumber() → Log.v()

NO_CATEGORY → LOG: NO_CATEGORY → LOG:
Intent.getAction() → Log.v() Intent.getAction() → Log.v()

E
xp

lo
itL

in
ux

L
ot

oo
r

be
e5

4f
ae

...
5e

70
.a

pk

NO_CATEGORY → LOG:

4c
70

f5
ef

...
d2

7e
.a

pk

NO_CATEGORY → LOG:
Runtime.getRuntime() → Log.d() Runtime.getRuntime() → Log.d()
File.getAbsolutePath() → Log.e() File.getAbsolutePath() → Log.e()
File.getAbsolutePath() → Log.d() File.getAbsolutePath() → Log.d()
EncodingUtils.getAsciiString() → Log.d() EncodingUtils.getAsciiString() → Log.d()

NO_CATEGORY → FILE: NO_CATEGORY → FILE:
Resources.getAssets() → FileOutputStream.write() Resources.getAssets() → FileOutputStream.write()

NO_CATEGORY → NO_CATEGORY: NO_CATEGORY → NO_CATEGORY:
Resources.getAssets() → AssetManager.open() Resources.getAssets() → AssetManager.open()
File.getAbsolutePath() → MediaPlayer.setDataSource() File.getAbsolutePath() → MediaPlayer.setDataSource()
Resources.getString() → Intent.putExtra() Resources.getString() → Intent.putExtra()

4.3.5.2 Different Family, Same Behavior

The second case involves applications that behave similarly (i.e., belong
to the same cluster) but are classified into different families. Table 4.7 in-
cludes some examples from the Drebin dataset. The first pair of apps are
from Opfake and Stealer families. Here, the app from Opfake family is a
Trojan which infects users when they click on a link that allows opening
a Java enabled browser or web page. Then, the device performs the ma-
licious activities indicated in a given web page. These commands enable
attackers to install malicious software, steal personal information, or send
text messages depending on the variant type. The app from the Stealer
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Table 4.6: Examples of samples from the same family of AMD dataset
exhibiting similar behaviors.
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NETWORK_INFORMATION → SMS_MMS:

cf
a0

39
53

...
a5

a7
.a

pk

NETWORK_INFORMATION → SMS_MMS:
SmsManager.getDefault() → SmsManager.sendTextMessage() SmsManager.getDefault() → SmsManager.sendTextMessage()
SmsManager.divideMessage() → SmsManager.sendMultipartTextMessage() SmsManager.divideMessage() → SmsManager.sendMultipartTextMessage()
SmsManager.getDefault() → SmsManager.sendMultipartTextMessage() SmsManager.getDefault() → SmsManager.sendMultipartTextMessage()

UNIQUE_IDENTIFIER → NO_CATEGORY: UNIQUE_IDENTIFIER → NO_CATEGORY:
TelephonyManager.getDeviceId() → JSONObject.put() TelephonyManager.getDeviceId() → JSONObject.put()

NETWORK_INFORMATION → NO_CATEGORY: NETWORK_INFORMATION → NO_CATEGORY:
SmsMessage.getMessageBody() → JSONObject.put() SmsMessage.getMessageBody() → JSONObject.put()
SmsMessage.getOriginatingAddress() → JSONObject.put() SmsMessage.getOriginatingAddress() → JSONObject.put()

NO_CATEGORY → SMS_MMS: NO_CATEGORY → SMS_MMS:
JSONObject.get() → SmsManager.sendTextMessage() JSONObject.get() → SmsManager.sendTextMessage()
JSONObject.getString() → SmsManager.sendTextMessage() JSONObject.getString() → SmsManager.sendTextMessage()
JSONObject.get() → SmsManager.sendMultipartTextMessage() JSONObject.get() → SmsManager.sendMultipartTextMessage()
JSONObject.getString() → SmsManager.sendMultipartTextMessage() JSONObject.getString() → SmsManager.sendMultipartTextMessage()

NO_CATEGORY → FILE: NO_CATEGORY → FILE:
File.getAbsolutePath() → FileOutputStream.write() File.getAbsolutePath() → FileOutputStream.write()

NO_CATEGORY → NO_CATEGORY: NO_CATEGORY → NO_CATEGORY:
Camera.getParameters() → Camera.setParameters() Camera.getParameters() → Camera.setParameters()
JSONArray.getString() → HashSet.add() JSONArray.getString() → HashSet.add()
JSONObject.get() → HashSet.add() JSONObject.get() → HashSet.add()
JSONObject.getString() → HashSet.add() JSONObject.getString() → HashSet.add()
PowerManager.newWakeLock() → JSONObject.put() PowerManager.newWakeLock() → JSONObject.put()
JSONObject.get() → JSONObject.put() JSONObject.get() → JSONObject.put()
Camera$Parameters.getSupportedPreviewSizes() → Camera$Parameters.setPictureSize() Camera$Parameters.getSupportedPreviewSizes() → Camera$Parameters.setPictureSize()
Camera.getParameters() → Camera.setPictureSize() Camera.getParameters() → Camera.setPictureSize()
JSONObject.get() → String.substring() JSONObject.get() → String.substring()
JSONArray.getString() → ObjectOutputStream.writeObject() JSONArray.getString() → ObjectOutputStream.writeObject()
JSONObject.get() → ObjectOutputStream.writeObject() JSONObject.get() → ObjectOutputStream.writeObject()
JSONObject.getString() → ObjectOutputStream.writeObject() JSONObject.getString() → ObjectOutputStream.writeObject()
JSONObject.getString() → JSONObject.put() JSONObject.getString() → JSONObject.put()
File.getAbsolutePath() → String.substring() File.getAbsolutePath() → String.substring()
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NETWORK_INFORMATION → SMS_MMS:
SmsManager.getDefault() → SmsManager.sendTextMessage() SmsManager.getDefault() → SmsManager.sendTextMessage()
SmsManager.getDefault() → SmsManager.sendMultipartTextMessage() SmsManager.getDefault() → SmsManager.sendMultipartTextMessage()
SmsManager.divideMessage() → SmsManager.sendMultipartTextMessage() SmsManager.divideMessage() → SmsManager.sendMultipartTextMessage()

NETWORK_INFORMATION → NO_CATEGORY: NETWORK_INFORMATION → NO_CATEGORY:
SmsMessage.getMessageBody() → JSONObject.put() SmsMessage.getMessageBody() → JSONObject.put()
SmsMessage.getOriginatingAddress() → JSONObject.put() SmsMessage.getOriginatingAddress() → JSONObject.put()
SmsMessage.getMessageBody() → String.substring() SmsMessage.getMessageBody() → String.substring()
SmsMessage.getOriginatingAddress() → String.substring() SmsMessage.getOriginatingAddress() → String.substring()

UNIQUE_IDENTIFIER → NO_CATEGORY: UNIQUE_IDENTIFIER → NO_CATEGORY:
TelephonyManager.getDeviceId() → JSONObject.put() TelephonyManager.getDeviceId() → JSONObject.put()

CALENDAR_INFORMATION → NO_CATEGORY: CALENDAR_INFORMATION → NO_CATEGORY:
Calendar.getInstance() → Calendar.setTime() Calendar.getInstance() → Calendar.setTime()
Calendar.getTimeInMillis() → AlarmManager.set() Calendar.getTimeInMillis() → AlarmManager.set()

NO_CATEGORY → AUDIO: NO_CATEGORY → AUDIO:
AnimationUtils.loadAnimation() → AudioManager.setRingerMode() AnimationUtils.loadAnimation() → AudioManager.setRingerMode()
ViewGroup.getChildAt() → AudioManager.setRingerMode() ViewGroup.getChildAt() → AudioManager.setRingerMode()
EditText.getText() → AudioManager.setRingerMode() EditText.getText() → AudioManager.setRingerMode()

NO_CATEGORY → SMS_MMS: NO_CATEGORY → SMS_MMS:
ViewGroup.getChildAt() → SmsManager.sendTextMessage() ViewGroup.getChildAt() → SmsManager.sendTextMessage()
EditText.getText() → SmsManager.sendTextMessage() EditText.getText() → SmsManager.sendTextMessage()
JSONObject.getString() → SmsManager.sendTextMessage() JSONObject.getString() → SmsManager.sendTextMessage()
AnimationUtils.loadAnimation() → SmsManager.sendTextMessage() AnimationUtils.loadAnimation() → SmsManager.sendTextMessage()
JSONObject.get() → SmsManager.sendTextMessage() JSONObject.get() → SmsManager.sendTextMessage()
AnimationUtils.loadAnimation() → SmsManager.sendMultipartTextMessage() AnimationUtils.loadAnimation() → SmsManager.sendMultipartTextMessage()
ViewGroup.getChildAt() → SmsManager.sendMultipartTextMessage() ViewGroup.getChildAt() → SmsManager.sendMultipartTextMessage()
EditText.getText() → SmsManager.sendMultipartTextMessage() EditText.getText() → SmsManager.sendMultipartTextMessage()

NO_CATEGORY → NO_CATEGORY: NO_CATEGORY → NO_CATEGORY:
Throwable.getMessage() → JSONObject.put() Throwable.getMessage() → JSONObject.put()
WebView.getSettings() → WebSettings.setJavaScriptEnabled() WebView.getSettings() → WebSettings.setJavaScriptEnabled()
Locale.getCountry() → JSONObject.put() Locale.getCountry() → JSONObject.put()
ContentResolver.query() → JSONObject.put() ContentResolver.query() → JSONObject.put()
TextView.getText() → AlarmManager.set() TextView.getText() → AlarmManager.set()

family is also a kind of Trojan leaking personal information through the
network. Also, the pair of apps from RuFraud and Zitmo families share
several information flows. Thus, the sample from RuFraud is a Trojan
which send premium-rate SMS messages to a number depending on the
country where the SIM card is registered. Also, it hides any messages re-
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ceived from the target numbers. On the other hand, the sample from Zitmo
is a banking Trojan which tries to defeat the second factor of authentica-
tion in an electronic transaction and steal credentials and financial data.
Finally, the apps from MobileTx and YcChar are also Trojans which steal
personally identifiable information from the device, log them and some-
times send them to a server or premium-rate number. Table 4.8 contains
two instances for the same case from AMD dataset. The first pair of apps
are from Gumen and Leech families detected in 2013 and 2015, respec-
tively. Here, the app from Gumen family is a Trojan which mainly logs
keyboard strokes and collects system information in order to leak them to
a remote server. It also has the ability to run or terminate other processes
after obtaining root privileges. Similarly, the app from Leech family is
also a Trojan which tries to get root privileges initially and inject itself into
other system processes by exploiting the Zygote process, the core process
in the Android OS. After gaining root privileges, it tries to collect a variety
of information and sends them to a remote server. This family along with
two other families, Ztorg and Gorpo, form the basic modules of a sophis-
ticated and recently detected Android Trojan family known as Triada. The
second pair of apps are from Erop and FakeIns families, both known to be
Trojan-SMS malware. The app from Erop family penetrates the devices
via users downloads. It then starts running in the background when the
browser is opened. Next, it starts capturing information and advertising
unwanted services by sending premium rate text messages. Also, the app
from FakeIns family is a Trojan able to send premium text messages in
more than 60 countries. This app disguises itself as a legitimate Android
application to watch pornographic movies. It can also delete, respond or
even intercept incoming text messages.

4.3.5.3 Same Family, Different Behavior

The third case happens when two applications of the same family be-
have different. Table 4.9 lists three examples of this case from the Drebin
dataset. The first pair of apps are from a well-known Trojan family, called
BaseBridge. Generally, this family is known to have malware that once
installed can achieve root privileges and install their payloads. Once the
device is infected, they can send sensitive unique identifier information to
remote control servers or to premium numbers. However, App 1 in Table
4.9 contains source and sink API methods which are not sensitive whereas
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Table 4.7: Examples of samples in different families of Drebin dataset
with similar behaviors.
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NETWORK_INFORMATION → NO_CATEGORY:
TelephonyManager.getNetworkOperator() →String.startsWith() SmsMessage.getOriginatingAddress() →Intent.putExtra()

SmsMessage.getMessageBody() → Intent.putExtra()
SmsMessage.getMessageBody() → String.startsWith()

NO_CATEGORY → NO_CATEGORY: NO_CATEGORY → NO_CATEGORY:
WebView.getSettings() → WebSettings.setJavaScriptEnabled() Intent.getExtras() → Intent.putExtra()
Hashtable.get() → PrintStream.println() PendingIntent.getBroadcast() → AlarmManager.set()
PendingIntent.getBroadcast() → AlarmManager.setRepeating()
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NETWORK_INFORMATION → SMS_MMS:
SmsManager.getDefault() → SmsManager.sendTextMessage() SmsManager.getDefault() → SmsManager.sendTextMessage()

SmsMessage.getMessageBody() → SmsManager.sendTextMessage()
SmsMessage.getOriginatingAddress() → SmsManager.sendTextMessage()

NETWORK_INFORMATION → NO_CATEGORY: NETWORK_INFORMATION → NO_CATEGORY:
TelephonyManager.getNetworkOperator() → String.substring() SmsMessage.getMessageBody() → String.substring()

SmsMessage.getMessageBody() → String.startsWith()

NO_CATEGORY → SMS_MMS: NO_CATEGORY → SMS_MMS:
PendingIntent.getBroadcast() → SmsManager.sendTextMessage() PendingIntent.getBroadcast() → SmsManager.sendTextMessage()
JSONObject.getString() → SmsManager.sendTextMessage()
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UNIQUE_IDENTIFIER → LOG:
TelephonyManager.getSubscriberId() → Log.i() TelephonyManager.getDeviceId() → Log.i()

UNIQUE_IDENTIFIER → NO_CATEGORY: DATABASE_INFORMATION → LOG:
TelephonyManager.getSubscriberId() → Intent.putExtra() SQLiteDatabase.query() → Log.d()

SQLiteDatabase.getPath() → Log.d()

NO_CATEGORY → LOG: NO_CATEGORY → LOG:
ByteArrayOutputStream.toByteArray() → Log.i() Properties.getProperty() → Log.i()
Intent.getStringExtra() → Log.i()

NO_CATEGORY → NO_CATEGORY: NO_CATEGORY → NO_CATEGORY:
WebView.getSettings() → WebSettings.setJavaScriptEnabled() Properties.getProperty() → AssetManager.open()
Bitmap.createBitmap() → ImageView.setImageBitmap()
JSONObject.getString() → AssetManager.open()
String.getBytes() → OutputStream.write()

App 2 is extracting identifier information such as getSimSerialNumber.
Another case happens in Glodream where App 1 logs the SIM (Subscriber
Identity Module) serial number comparing with App 2 that leaks sensitive
information through sending text messages. The third pair of apps come
from the popular Trojan family, Nickspy, that leaks sensitive information
by sending text messages. However, App 1 leaks location information in
this way, while most flows in App 2 are non-sensitive. Table 4.10 shows
two examples of the same case from AMD dataset. The first pair of apps
are from Triada family which was first detected in 2016. Triada is one of
the most advanced types of Trojan which is downloaded and installed by
three other previously known Trojan families, including Leech, Gorpo and
Ztorg. After obtaining root privileges, this Trojan can leverage the Zygote
process and can be pre-installed into any applications running on the smart-
phone and change their logics. It is a modular Trojan with a wide range of
capabilities which are all set by a single command through C&C servers.
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Table 4.8: Examples of samples in different families of AMD dataset with
similar behaviors.
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NO_CATEGORY → LOG:
Log.getStackTraceString() → Log.println() JSONObject.getString() → Log.v()
Class.getSimpleName() → Log.println() Locale.getISO3Country() → Log.v()
Throwable.getMessage() → Log.println() Class.getSimpleName() → Log.d()

Class.getName() → Log.d()
TextView.getText() → Log.e()
Settings$Secure.getString() → Log.v()

NO_CATEGORY → NETWORK: NO_CATEGORY → NETWORK:
Bundle.getString() → URL.openConnection() JSONObject.getString() → URL.openConnection()

NO_CATEGORY → NO_CATEGORY: NO_CATEGORY → NO_CATEGORY:
Bundle.getString() → Intent.putExtra() URLConnection.getInputStream() → OutputStream.write()
Charset.name() → String.startsWith() WebView.getSettings() → WebSettings.setJavaScriptEnabled()
Resources.getColor() → View.setBackgroundColor() LinkedHashMap.get() → Writer.write()
Charset.name() → String.substring() PendingIntent.getBroadcast() → AlarmManager.set()
Intent.getIntExtra() → Activity.onCreate()
Resources.getStringArray() → Activity.onCreate()
LruCache.get() → ImageView.setImageBitmap()
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00
38

be
...

a7
0.

ap
k

Fa
ke

In
st

NETWORK_INFORMATION → SMS_MMS:
SmsManager.getDefault() → SmsManager.sendTextMessage() SmsManager.getDefault() → SmsManager.sendTextMessage()

NO_CATEGORY → SMS_MMS: NO_CATEGORY → SMS_MMS:
JSONObject.getString() → SmsManager.sendTextMessage() PendingIntent.getBroadcast() → SmsManager.sendTextMessage()
JSONObject.get() → SmsManager.sendTextMessage() ArrayList.get() → SmsManager.sendTextMessage()

NO_CATEGORY → NO_CATEGORY: NO_CATEGORY → NO_CATEGORY:
WebView.getSettings() → WebSettings.setJavaScriptEnabled() Resources.getXml() → HashMap.put()
WebView.getSettings() → WebSettings.setUseWideViewPort() PendingIntent.getBroadcast() → AlarmManager.set()
WebView.getSettings() → WebSettings.setLoadWithOverviewMode()
WebView.getSettings() → WebSettings.setBuiltInZoomControls()

However, App 1 is only capturing sensitive unique identifier information
and saving them into JSON files to leak them later in various ways whereas
App 2 does not contain any sensitive information flows. The second pair
of apps are from Fusob family, a ransomware first detected in 2015. This
family is still the most active ransomware in Germany [183] while it infects
very few users in Russia, Ukraine and Kazakhstan based on the language
which is active on the device. It displays fake screens and tries to accuse
victims for crimes. Then, it threatens them that a criminal case will be
opened unless they pay the fine. However, from the two apps listed in Ta-
ble 4.10, App 1 has much more capabilities (or more sensitive information
flows) than App 2. Here, App 1 extracts four main critical information
related to the network and unique identifiers, including Service Provider
Name or SPN (TelephonyManager.getSimOperatorName()), phone num-
ber string for line 1 (TelephonyManager.getLine1Number()), device ID
(TelephonyManager.getDeviceId()) and subscriber ID such as the Inter-
national Mobile Subscriber Identity (IMSI) for a GSM phone (Telepho-
nyManager.getSubscriberId()). It then saves all of them into JSON files
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Table 4.9: Examples of samples in the same family of Drebin dataset ex-
hibiting different behaviors.
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Resources.getIdentifier() → AlertDialog$Builder.setTitle()
Resources.getIdentifier() → AlertDialog$Builder.setNegativeButton()
Resources.getIdentifier() → AlertDialog$Builder.setMessage()
Resources.getString() → Intent.putExtra()
Resources.getStringArray() → Intent.putExtra()
Context.getString() → String.substring()
Context.getString() → HashMap.put()
Resources.getIdentifier() → AlertDialog$Builder.setPositiveButton()
Bitmap.createBitmap() → ImageView.setImageBitmap()
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NETWORK_INFORMATION → SMS_MMS:
TelephonyManager.getSimSerialNumber() → String.startsWith() SmsManager.getDefault() → SmsManager.sendTextMessage()
TelephonyManager.getSimSerialNumber() → String.substring()

NO_CATEGORY → LOG: NO_CATEGORY → LOG:
Bundle.getString() → Log.d() EditText.getText() → Log.w()
Bundle.getString() → Log.e() Array.newInstance() → Log.w()
Bundle.getInt() → Log.d()

NO_CATEGORY → NO_CATEGORY: NO_CATEGORY → SMS_MMS:
Resources.getDrawable() → Drawable.setBounds() String.getBytes() → SmsManager.sendTextMessage()
WebView.getSettings() → WebSettings.setJavaScriptEnabled()

NO_CATEGORY → NETWORK:
String.getBytes() → URLConnection.openConnection()

NO_CATEGORY → NO_CATEGORY:
String.getBytes() → String.substring()
WebView.getSettings() → WebSettings.setJavaScriptEnabled()
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NO_CATEGORY → LOG:
Location.getLatitude() → SmsManager.sendTextMessage() InetAddress.getByName() → Log.d()
Location.getLongitude() → SmsManager.sendTextMessage()
GsmCellLocation.getCid() → SmsManager.sendTextMessage()
GsmCellLocation.getLac() → SmsManager.sendTextMessage()

NETWORK_INFORMATION → SMS_MMS: NO_CATEGORY → NO_CATEGORY:
SmsManager.getDefault() → SmsManager.sendTextMessage() PendingIntent.getBroadcast() → AlarmManager.setRepeating()

EditText.getText() → String.substring()

(JSONObject.put()) for later exfiltration. On the other side, App 2 does not
contain any of these sensitive flows.

4.3.5.4 Summary

All in all, our analysis reveals that existing families do not exhibit be-
havioral consistency. We spotted samples in the same family with very
different behavior, as well as samples in different families with behavioral
similarity. Moreover, our clustering procedure has shown that it is possible
to divide datasets into groups with different behavioral footprints. Finally,
to show the time and memory complexity of our characterization method,
we have measured the average amount of time and memory (Table 4.11)
which is consumed in each step of our clustering approach per application.
As it is clear, extracting information flows, and, later, flows patterns are
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Table 4.10: Examples of samples in the same family of AMD dataset
exhibiting different behaviors.
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JSONObject.getInt() → JSONObject.put() HashMap.get() → String.substring()
JSONObject.getString() → JSONObject.put() HashMap.get() → String.startsWith()
Throwable.getStackTrace() → JSONObject.put() File.getAbsolutePath() → HashMap.put()
Throwable.getMessage() → JSONObject.put()
ArrayList.get() → String.substring()
ByteArrayOutputStream.toByteArray() → OutputStream.write()
Properties.getProperty() → JSONObject.put()
ArrayList.get() → JSONObject.put()
ComponentName.getPackageName() → HashMap.put()
String.getBytes() → RandomAccessFile.write()

UNIQUE_IDENTIFIER → LOG:
TelephonyManager.getSimSerialNumber() → Log.i()

UNIQUE_IDENTIFIER → NO_CATEGORY:
TelephonyManager.getDeviceId() → JSONObject.put()
TelephonyManager.getSubscriberId() → JSONObject.put()

NO_CATEGORY → FILE:
JarFile.getInputStream() → FileOutputStream.write()

NO_CATEGORY → LOG:
File.getName() → Log.i()
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Camera.getParameters() → Camera.setParameters() Class.getConstructor() → OutputStream.write()
Settings$Secure.getString() → JSONObject.put() Class.getMethod() → AssetManager.open()
ContentResolver.query() → JSONObject.put() File.getAbsolutePath() → Field.set()
Intent.getExtras() → Intent.putExtras() Field.get() → Field.set()
Thread.getName() → JSONObject.put() Class.getMethod() → Field.set()
Camera.getParameters() → Camera$Parameters.setRotation() Class.getDeclaredMethod() → Field.set()
Intent.getAction() → Intent.setAction() Class.getName() → String.substring()
Log.getStackTraceString() → JSONObject.put()
PendingIntent.getBroadcast() → AlarmManager.setRepeating()
PendingIntent.getBroadcast() → AlarmManager.set()
WebView.getSettings() → WebSettings.setJavaScriptEnabled()
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the most expensive steps in our method. However, these complexities are
negligible due to the powerful machines which are available nowadays,
and, also, the detailed insights this behavioral labeling provides. Also,
these complexities show that applying the same labeling scheme on new
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Table 4.11: Average amount of time and memory consumed in each step
of our clustering approach per application.

Dataset Flow Extraction (FlowDroid) Pattern Extraction (SPMF) Clustering (k-means++) Overall
Time (.sec) Memory (MB) Time (.sec) Memory (MB) Time (.sec) Memory (MB) Time (.sec) Memory (MB)

Drebin [76] 45.23 1031.85 292.43 7.60 1.23 163.85 338.89 1203.3
AMD [79] 100.75 1181.36 432.60 8.90 2.19 247.06 535.54 1437.42

datasets is not a challenging task despite the fact that it is consisted of
different preprocessing steps, including flow extraction, pattern extracting
and clustering.

We had some valuable findings comparing the results we got from ap-
plying our labeling method on the recently released AMD dataset (with
apps from 2010 to 2016) and the older Drebin dataset (with apps from
2010 to 2012). First, we observed an increase in the average number of
information flows. In particular, apps have 41 unique information flows
on average in AMD dataset as compared to an average of 26 informa-
tion flows per app in Drebin dataset. Second, we found 36 new pairs of
source and sink SuSi categories of information flows in the applications
of AMD dataset. As flows can reveal how apps treat with sensitive user’s
or smartphone’s data, we believe this shows that new and diverse behav-
ioral profiles have been evolved in recent years. Third, information flows
leaking geographical location information are 0.62% higher in the apps of
AMD dataset comparing with the ones in Drebin dataset. On the contrary,
flows leaking unique identifier information and network information are
2.66% and 2.27% higher in Drebin dataset. Moreover, leaking sensitive
information through sending text messages and the network are 2.64% and
1.74% more common in Drebin dataset respectively though logging cap-
tured information is more popular in AMD dataset by 2.4%. Last but not
least, patterns of flows have increased in both number and length in AMD
dataset.

4.4 Discussion

We next discuss some potential limitations of our approach to produce a
behavioral characterization of Android malware.
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4.4.1 Accuracy

The accuracy of our approach is critically dependent on the accurate iden-
tification of real information flows appearing in each application, which
are extracted using FLOWDROID. However, advanced obfuscation tech-
niques used in special types of malware can bypass static analysis tools
and, thus, flows containing in these apps might be missed. Also, using
reflection makes static taint analysis tools to miss some flows, particularly
if methods are invoked dynamically at runtime. We are not aware of any
study measuring the popularity of reflection in current malware samples
and, therefore, we cannot measure the extent of this limitation.

Moreover, our approach has some limitations in characterizing apps
which use collusion attacks, since most static taint analysis tools do not
consider information flows across apps (i.e., when the source is located in
one app and the data is passed on to another app that access the sink). Here,
malicious behavior which is delivered through collusion is missed.

4.4.2 Datasets

Our proposal and its experimental results might be affected by the number
and variety of malware samples in our datasets. While the exact cover-
age of our datasets is not known, we believe it is fairly representative as
it contains different types of malicious apps. Our study includes Drebin,
which extends the widely used Malgenome dataset and has been consis-
tently used by most works in the Android malware area in the last years.
We also included in our study one of the newest datasets of Android mal-
ware (AMD), which reinforced our main conclusions since the conclusions
extracted from both datasets proved to be similar. The limiting factor here
is the extraction of information flows, which requires a substantial amount
of computational resources and fails for a fraction of the apps analyzed.
However, these limitations are not critical for two main reasons. First,
powerful computational resources and memory are both available nowa-
days. Second, our scheme is not coupled with a particular flow extraction
tool and can benefit from further advancements in this area.
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4.4.3 Repackaged Apps

Repackaged apps might also affect the characterization scheme proposed
here. Most of these variants are composed of malicious payloads con-
tained within popular legitimate apps known as carriers. Since malicious
payloads have relatively smaller code sizes [195] than carriers, most of the
flows extracted from each application for behavioral-based characteriza-
tion may come from the benign carrier of the repackaged app and not the
malicious payload. If this happens, a flow-based characterization scheme
cannot reflect the real malicious intent of repackaged apps precisely. Fur-
thermore, it is not clearly known whether extracted flows are coming from
the carrier or the malicious payload, which can affect the proposed scheme
as well. If the majority of flows extracted from the repackaged app belong
to the carrier, the sample would resemble the benign legitimate application
that has been used for this repackaged version. Contrarily, if most of the
flows belong to the payload, this repackaged sample would be identified as
a completely different application compared to the incorporated legitimate
application.

4.5 Related Work

This section discusses four main related areas to this work, including in-
formation flow analysis in Android, info-flow based Android malware de-
tection, pattern mining in Android application analysis, and, ultimately,
malware characterization and classification.

4.5.1 Information Flow Analysis

Information flow analysis is a valuable technique to track how information
is transferred within the system [9]. Although information flow analysis
has been used in analyzing both PC and mobile malware, information flow
analysis in Android is not a trivial task for various reasons [196]. Firstly,
Android components can be executed in any arbitrary order depending on
the user interactions, which makes the flow graph fragmented. Secondly,
there is not a single entry point in Android applications [169], which makes
information flow analysis more complex than for traditional PC programs.
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Taint analysis is a commonly used approach to track information flows
which can be performed either statically or dynamically. Generally, it is a
process through which taint labels are assigned to sensitive data when they
leave designated source methods (e.g., getDeviceId()), and, afterwards, dif-
ferent procedures are performed while these data reach specific sink meth-
ods (e.g., sendTextMessage()). Both of these taint analysis techniques have
a number of limitations despite their advantages.

Static taint analysis tools, including DroidSafe [93], FlowDroid [92],
FlowMine [94], LeakMiner [96] and CHEX [95] are applied before run-
time and require a considerable amount of resources (CPU and RAM mem-
ory). They can be bypassed using advanced (or sometimes simple) obfus-
cation techniques [197]. Moreover, they are imprecise and have a high
false positive rate as they do not consider runtime behavior of applica-
tions [198]. Finally, they suffer from scalability issues as they need to
traverse the whole call-graph of applications [199].

On the other hand, dynamic taint analysis tools such as DroidScope [23]
and TaintDroid [98] are applied at run-time or in a simulated environment.
These tools may miss some flows which are not exercised explicitly at run-
time [157]. Furthermore, they impose a high computational overhead and
can be bypassed using novel strategies for simulator detection which has
been adopted recently by malware developers [200].

4.5.2 Android Malware Detection Using InfoFlows

Due to the fine granularity of information flows, they have been widely
used for two main purposes in the area of Android malware analysis. The
first group of works have made use of information flows in Android mal-
ware detection, while the second group of works have assessed apps secu-
rity by producing risk scores based on information flows.

DroidSieve [201] is a recently proposed tool that relies on sensitive in-
formation flows extracted from static taint analysis. It also extracts some
additional features, including permissions, code structures, and the set of
invoked components to create a fingerprint (i.e., a set of features) for each
malware sample. DroidAPIMiner [129] uses the information in critical
API calls and their parameters to distinguish malware from benign appli-
cations. DroidMat [202] is a malware detection system which works based
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on tracing API calls and extracting some extra information which is ob-
tained from the Manifest.xml file (e.g., requested permissions and intents).

TriFlow [185] is a risk scoring system for Android apps using informa-
tion flows. In the first step, it assigns a degree of maliciousness to different
information flows based on their frequency in malware samples and their
rarity in benign apps. Next, it calculates a risk score for each applica-
tion based on the occurrence probabilities of information flows and their
amount of maliciousness.

4.5.3 Pattern Mining in Android Apps

Pattern mining has been frequently used in recent works related to Android
app analysis. One of the main areas in which pattern mining algorithms
have been applied is for usage prediction in smartphones [119] [120]. Most
of the works in this area have focused on mining behavioral patterns (or
profiles) from Android applications using different features. For instance, a
mining algorithm has been proposed in [121] to extract temporal API usage
patterns from client programs in order to help developers having a precise
and complete understanding of the current libraries. A similar work [122]
extracts time-constrained sequential patterns using mining algorithms to
identify application usage patterns on smartphones. ApMiner [123] re-
lies on association rule mining of android apps in the market to identify
co-occurrences of permissions and API methods. Based on this, it recom-
mends specific permissions which need to be added when developers use
special API methods in their programs.

Another area in which pattern mining algorithms have been adopted is
malware characterization. In a very recent work [124], information on apps
descriptions, together with sensitive data flow signatures, have been used to
characterize 3,691 malicious and 1,612 benign applications. Here, a model
is used initially to cluster apps based on the information appearing in their
descriptions. The information gain ratio is then used to generate a topic-
specific flow signature for each topic. These flows are a list of patterns
that appear in the apps of a corresponding topic in which each pattern is
assigned a gain value indicating its power to discriminate malware from
benign applications.
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4.5.4 Malware Characterization and Classification
Several works have addressed the problem of how characterize and classify
both desktop and Android malware, as this contributes to a better under-
standing of the current behavior of malware in the wild as well as identify-
ing new malware specimens.

The majority of works in the area of desktop malware classification rely
on different features extracted from binaries. An early attempt in this area
compared the Control Flow Graph (CFG) of unknown malware samples
with previously known ones [203]. CFGs provide precise information of
the structure of the program in general and its sub-routines, as it reveal
the paths which are induced by different instructions such as conditional
branches. Other works have explored the idea of classifying malware by
using a variety of other features, such as (function) call graphs [204, 205].

Most of the methods proposed for Android malware classification rely
on static features, which are obtained either from the app package or
through static analysis. The very first work in this category dates back
to 2012 [39], where the authors proposed a method to systematically char-
acterize Android malware using three main features, including the way
through which they are activated, their installation method, and the nature
of their malicious payloads. A more recent work [206] addresses Android
malware characterization by studying the behavior of apps’ malicious pay-
loads (known as riders) after removing irrelevant code segments using dif-
ferential analysis. In another relevant work [207], intent actions, API An-
droid packages, and sensitive API calls are used to characterize Android
malware. Finally, [208] proposes a method to classify Android malware
based on the frequent subgraphs which are extracted from the CFG of ap-
plications. In addition to all these works, a few tools like androsim [209]
and dexid [210] can be considered to check if two apps share common
methods or classes, and to classify them based on these similarities. Very
few works have proposed characterization schemes based on dynamic fea-
tures. One recent example is [211], in which Android malware is profiled
in a sandbox and their invoked API calls are used to perform similarity
analysis and to group them into various categories.

Despite this effort in characterizing Android malware, most of the works
in this area–in particular, those relying on static features–are unable to pro-
duce an easy-to-interpret description of the sample’s real behavior. This is
critically important as the number of Android malware variants of already
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known families have raised significantly in comparison to apps from new
malware families [184, 195].

4.6 Conclusions
In this chapter, we have discussed the problem of how family labels in An-
droid malware relate to the behavior of their samples. Our approach relies
on modeling apps through their information flows and then characteriz-
ing behavior by patterns of such flows. We have also conducted a cluster
analysis to identify groups of apps whose patterns of information flows are
similar. Our experimental results show that the notion of Android malware
family does not necessarily imply that all its samples behave similarly, and
also that different malware families sometimes behave identically.

Our future work includes two main directions. First, we will explore the
application of a similar approach to characterize other types of malicious
binaries, such as traditional desktop malware. To do so, we intend to lever-
age tools like Panorama [212], a system to capture information flows for
malware detection. Second, the same method can be used to characterize
benign applications based on their information flows and obtain behavioral
profiles. This can help in identifying and labeling legitimate applications
that, however, involve sensitive information flows and might potentially
involve security and/or privacy violations.
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5
AndrODet: An Adaptive

Android Obfuscation
Detector

5.1 Introduction

The widespread usage of smartphones in various security-sensitive opera-
tions in recent years, such as bank transactions and online payments [213],
requires that the security of these platforms must be improved. This affects
particularly to smartphones hosting Android applications, as they have the
biggest world-wide market share [214]. More specifically, in recent years
where re-packaging popular smartphone banking applications has raised
in number [215], hardening apps against reverse engineering has become
increasingly important.

Source code is an important intellectual property for both legitimate
software developers and malware writers; specifically, in Android oper-
ating system where the applications can be easily decompiled for auto-
mated code analysis or visual inspection. In the legitimate context, obfus-
cation prevents the competitors from cloning or copying the source code
with little effort and just by adding very few extra features, while in a non-
legitimate context, it hides the apps’ semantics from analysts by increasing
the cost of reverse engineering and decompilation.

Obfuscation has been vastly applied to both malware and benign An-
droid applications in the last years [7]. In particular, three types of obfusca-
tion have been used, including identifier renaming, string encryption, and
control flow obfuscation mainly because they are either available in free
obfuscators or in the trial versions of commercial obfuscators. Also, they
create a satisfactory level of confusion in the app’s source code. Based on
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previous researches [7], malware writers prefer to make use of more com-
plex renaming policies than legitimate software developers. Also, string
encryption is more popular in malware than in benign apps. Finally, al-
though control-flow obfuscation is only offered by few commercial obfus-
cators, its prevalence and detection has not been studied before.

Prevalent usage of obfuscation in Android malware has also cast doubt
on the reliability of most Android malware analysis tools [19] [104], and,
in particular, static ones. The majority of these tools rely upon some static
features which are obtained from the source code and are severely im-
pacted by little transformations in the source code [19]. Consequently, they
are not resilient to transformation attacks. Also, obfuscation has turned out
to be a new barrier to protect Android users [8], and, therefore, detecting
obfuscation is critical in understanding the underlying semantics of mal-
ware specimens.

Previous works leverage on batch learning systems to detect obfusca-
tion. Thus, after extracting a set of features from the apps pooled as
training set, a system is trained to detect one or more types of obfusca-
tion [7] [20]. While these systems offer promising accuracy rates, they do
have a major drawback. Systems which work based on batch learning do
not necessarily remain effective over time - when new applications appear
or when novel obfuscation techniques are proposed. Thus, they must be
eventually re-trained with the updated dataset. This task is not feasible in
a setting where apps are developed and introduced constantly (as it cur-
rently happens in both Android malware and benign apps). Also, most of
the recent works have tried to detect trivial types of obfuscation on a small
dataset of apps. Finally, advanced obfuscation techniques such as control
flow obfuscation has not been addressed based on a representative recent
malware dataset [20].

To overcome these limitations, in this chapter, we explore the use of on-
line learning algorithms through Data Stream Mining (henceforth DSM)
[216]. DSM can be seen as an adaptation of traditional machine learning
methods so as to be suitable for streams of elements. Remarkably, DSM
approaches do not need to be re-trained, as they continuously learn from
the input samples. Leveraging DSM, we aim to detect basic forms of ob-
fuscation (particularly, identifier renaming and string encryption), as well
as the non-trivial control flow obfuscation. To assess our approach, we
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consider a dataset of 34962 samples from both malware and benign appli-
cations.

We propose ANDRODET, an online learning system to detect three
common types of obfuscation techniques in Android applications, known
as identifier renaming, string encryption, and control flow obfuscation. All
of these obfuscation techniques are detected based on some static, quick-
to-obtain features extracted from the Dalvik executable bytecode of appli-
cations. ANDRODET is modular, meaning that there is a separate embed-
ded module within the system to detect each type of obfuscation, and each
of these modules are trained separately.

ANDRODET has been implemented in python and tested on a com-
bination of malware and benign samples. The former set of apps are
collected from a recently released and carefully-labeled malware dataset,
called AMD [79], while the latter are obtained by crawling the popular
open-source repository of benign apps known as F-Droid [84]. We have
also compared our results with state-of-the-art batch learning algorithms
by leveraging Auto Tune Models (ATM) [217], a system developed for
hyper-parameter tuning of batch learning algorithms and classification us-
ing a variety of algorithms from this kind.

Experimental results show that online learning algorithms can detect
three popular types of obfuscation techniques in Android applications with
high accuracy. In addition, they can save significant amount of time and
memory as compared to batch learning algorithms.

In short, the main contributions of this chapter are as follows:
• We propose ANDRODET, a modular online learning mechanism to

detect identifier renaming, string encryption, and control flow obfus-
cation in Android applications. To allow future works benefit from
this research, we make our tool publicly available at:

https://github.com/OMirzaei/AndrODet

• As ANDRODET is based on DSM techniques, there is no need to re-
train the system from scratch. Thus, we compare the effectiveness
of our system with machine learning algorithms working based on
batch learning. To do this, we leverage MOA [216] and add some
extra features to this tool for hyper-parameter tuning which will be
used later for classification. This enables us to have a fair compar-
ison between the results obtained from online learning algorithms

114

https://github.com/OMirzaei/AndrODet


5. AndrODet: An Adaptive Android Obfuscation Detector

using MOA and the ones which are obtained from batch learning
methods using ATM .

• ANDRODET is able to deal with multidex Android applications. Our
system looks for all classes.dex files in different directories and ex-
tracts its features from all of them.

• We assess the efficiency of our tool with AMD [79] and PraGuard
[78]. Both datasets, with more than 24k apps in total, contain ground
truth for apps which are obfuscated by identifier renaming and string
encryption techniques. Moreover, to create ground truth for control
flow obfuscated apps which was previously lacking, we have lever-
aged a well-known obfuscator known as Allatori [218] and have ob-
fuscated all the samples of F-Droid [84], a free and open source An-
droid applications repository. We aim at publicly releasing the latter
set of apps to foster further research in this direction.

The remainder of this chapter is as follows. Section 5.2 introduces com-
mon obfuscation techniques which are applied to Android malware in or-
der to evade detection. Section 5.3 describes the proposed system. Evalua-
tion results are presented in Section 5.4 followed by a discussion in Section
5.5. Section 5.6 surveys some related works, and, finally, Section 5.7 con-
cludes the chapter and presents future research directions.

5.2 Obfuscation in Android
Obfuscation is commonly used to protect software against reverse engi-
neering, thus making the software harder to understand [219]. There are
multiple obfuscation techniques [220]. In this work we focus on three
well-known obfuscation techniques that are commonly applied to Android
applications, namely identifier renaming, string encryption, and control
flow obfuscation [220] [221].

A common practice in programming is to choose meaningful names for
identifiers (i.e, variables, class and method names, etc.) to increase the
code readability. This will helps in identifying and fixing bugs or adding
extra features later, as understanding the semantics of code with meaning-
ful identifiers is much simpler. However, malware writers try to choose
either meaningless names for their identifiers or else use obfuscators in or-
der to garble the key identifiers used in their source code. Obfuscators use
a variety of methods to rename key identifiers of an application either at the
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source code level or directly in the .dex files. An obfuscated identifier can
be often told apart visually from a non-obfuscated one because its name is
meaningless. For example, a common renaming strategy is to choose ran-
dom short strings in lexicographic order, e.g., ’a’, ’b’, ’aa’, ’ab’, ’ac’, etc.,
usually with lengths less than 3 depending on the number of identifiers.
A second strategy is to leverage the overloading feature of Java through
excessive overloading and map irrelevant identifier names to the original
ones.

By doing so, reverse engineers need to put much more effort into un-
derstanding the hidden semantics of code when critical information such
as method names are obscured. Based on a recent study [7], the preva-
lence of identifier renaming is slightly less in malware than in benign apps
from third-party markets. Also, malware authors tend to use more complex
renaming policies, such as using special characters (e.g., encoded in Uni-
code), which creates challenges for systems which are developed to detect
this type of obfuscation.

Constant strings can also leak sensitive and private source code infor-
mation. Thus, they are encrypted in different ways to prevent a convenient
reverse analysis of applications. The most simplest way to encrypt en-
cryption is through an XOR operation. However, standard cryptographic
algorithms can be applied, including AES or DES [222]. Also, secret keys
can be defined (or either changed) dynamically to apply more advanced
types of string obfuscation, which is almost impossible to be handled by
static analysis tools. Studies show that string encryption is more popu-
lar in malware and nearly all benign apps do not make use of this type of
obfuscation.

Control flow obfuscation hinders static analysis by changing the logi-
cal flow of the program through modifications in its Control Flow Graph
(CFG). Typical techniques from this category try to expand or flatten the
CFG in order to increase the cost of reverse engineering of applications.
Common ways to do this include injecting dead (or irrelevant) code, ex-
tending loop conditions, adding redundant operations, parallelizing code,
re-ordering statements, loops, and inserting opaque predicates. The ma-
jority of these approaches affect some properties of the CFG, such as the
number of nodes and branches. Based on recent observations, control flow
obfuscation is not widely used, and it is only offered by a few number of
commercial obfuscators such as Allatori [218] and DashO [223].
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5.3 Approach
This section presents our approach to detect three types of obfuscation
techniques in Android applications. A general overview of the system
is proposed in Section 5.3.1. Then, primary goals are clearly defined in
Section 5.3.2. In Section 5.3.3, we describe all the details related to the
datasets which are used in this work. The set of all features considered
for our detectors and possible feature selection algorithms are discussed
in Section 5.3.4. Finally, classification algorithms chosen for our online
learning system and their hyper parameter tuning are presented in Section
5.3.5.

5.3.1 Overview

ANDRODET is an online learning system which is developed to detect
three main types of obfuscation in Android applications, namely identifier
renaming, string encryption, and control flow obfuscation. Also, it can
detect obfuscation in Multidex Android applications. Android RunTime
(ART) which is used in Android 5.0 (API level 21) and higher supports
loading multiple Dalvik EXecutable (DEX) files from APK files. It then
performs pre-compilation at install time and scans for all classes.dex files
to compile them into a single .oat file. This feature enables applications
to distribute their code into several .dex files. Specific Android malware
variants have also been observed which load their malicious .dex file from
a secondary directory (e.g., assets directory) [224] [225]. ANDRODET

searches for all classes.dex files in different directories and extracts its fea-
tures from all of them.

The proposed system is modular, i.e., there is an embedded module (bi-
nary classifier) to detect each type of obfuscation as shown in Figure 5.1a.
Using a modular architecture has three main advantages. First, it reduces
feature overlap, and, thus, improves the precision accuracy. Second, the
system can be easily updated with a new set of features for each module
based on variations in obfuscation techniques. Third, different learning
algorithms can be used for each module based on the nature of the input
data.

To label new unseen apps, all required features are extracted by each
module and a feature vector is created at the first step, as depicted in Fig-
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(a) ANDRODET global structure.

(b) Inner structure of each detector mod-
ule.

Figure 5.1: ANDRODET architecture.

ure 5.1b. A binary classifier is then chosen to decide whether or not the
app is obfuscated. These classifiers are trained incrementally using online
learning algorithms while labeling new applications.

5.3.2 Goals

ANDRODET is intended to achieve the following main goals:
• Rapidity. The system must be able to work in a reduced amount of

time.
• Readiness. The system must be ready to work with moderate train-

ing requirements.
• Accuracy. The system must accurately identify the type of obfusca-

tion that has been applied.
• Scalability. The system must be able to cope with a large number of

applications using a moderate amount of resources.
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5.3.3 Dataset Description

Our dataset is formed by both malware and benign applications, and con-
tains ground truth for all of the obfuscation techniques considered in this
work. We have built up the ground truth for identifier renaming and string
encryption obfuscation techniques by leveraging the AMD dataset [79],
a recently released Android malware dataset with apps from 71 families
ranging from 2010 to 2016 (Table 5.1). This dataset is formed by 24,553
applications that are labeled based on a number of behavioral criteria, in-
cluding the presence of different anti-analysis techniques (e.g., identifier
renaming or string encryption) in the apps of each family of one particular
variety. To have a fair and balanced ratio of obfuscated and non-obfuscated
samples, we have selected the same number of apps for each type, some of
which were obfuscated using more than one technique.

In order to create a dataset of Android apps for control flow obfus-
cation technique, 1,380 applications were downloaded from the F-Droid
market [84]. Both the compiled app package (APK file) and their Java
source code are available in the market. Therefore, they are used as the
ground truth for non-obfuscated apps. Also, to gather the same number
of control flow obfuscated apps, we apply Allatori [218] over 1,380 apps
selected randomly from AMD dataset. These apps are control flow obfus-
cated to the maximum level1. According to Allatori documentation, this
level of obfuscation makes the apps bigger in size and a little bit slower as
it uses all types of control flow obfuscation techniques. We finally choose
80% of this repository (2208 apps) to assess the accuracy of control flow
obfuscation detection module, and we leave the remaining 20% (552 apps)
to test its efficiency over unseen applications. The ratio of obfuscated and
non-obfuscated samples is again equal in both portions.

Finally, we have used an additional released dataset, known as PraGuard
[78] to evaluate the performances of our identifier renaming and string en-
cryption detector modules over unseen applications. This dataset is com-
posed of 10,479 samples, obtained by obfuscating the MalGenome [39]
and the Contagio Minidump [77] datasets with seven different obfusca-
tion techniques. It is worth mentioning that during our feature extraction
process, we found that some apps cannot be disassembled properly with
dexdump, and, thus, we have discarded them from our datasets.

1http://www.allatori.com/doc.html
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Table 5.1: Number of apps per obfuscation technique

Dataset
Identifier Renaming String Encryption Control Flow Obf. Global
Obf Non-obf Obf Non-obf Obf Non-obf Obf Non-obf

F-Droid 0 0 0 0 0 1,380 0 1,380
AMD 5,992 5,992 7,119 7,119 1,380 0 14,491 13,111

PraGuard 1,495 1,495 1,495 1,495 0 0 2,990 2,990
Total 7,999 7,999 8,614 8,614 1,380 1,380 17,481 17,481

Table 5.2: Set of all features considered for each detector module

Identifier Renaming String Encryption Control Flow Obfuscation

Avg_Wordsize_Flds Avg_Entropy Num_Nodes
Avg_Distances_Flds Avg_Wordsize Num_Sinks
Num_Flds_L1 Avg_Length Num_Edges
Num_Flds_L2 Avg_Num_Equals Num_Goto/LOC
Num_Flds_L3 Avg_Num_Dashes Num_NOP/LOC
Avg_Wordsize_Mtds Avg_Num_Slashes LOC
Avg_Distances_Mtds Avg_Num_Pluses File_Size
Num_Mtds_L1 Avg_Sum_RepChars
Num_Mtds_L2
Num_Mtds_L3
Avg_Wordsize_Cls
Avg_Distances_Cls
Num_Cls_L1
Num_Cls_L2
Num_Cls_L3

5.3.4 Feature Extraction and Feature Selection

The first important decision to make in learning-based systems is to choose
the set of features that will be used to label (or predict) new unseen in-
stances. Once they are defined, analysts may decide to apply feature se-
lection algorithms to discard those features that are not relevant despite the
initial assumption, or those with a low variance among all instances. In our
case, we aim to identify a set of features that, apart from being useful for
the prediction task, can be rapidly extracted from the applications. Thus,
we simply parse the Dalvik bytecode (recall Section 2.2) of each app us-
ing dexdump [26] to find the majority of features. Table 5.2 shows the set
of all features considered. In addition, the distributions of all features ex-
tracted from all apps in our dataset are included in the Appendix for further
analysis. In what follows, we describe them per module in more detail.

5.3.4.1 Features for Identifier Renaming Detection

To detect identifier renaming, we extract 5 different features from the key
identifiers of Dalvik bytecode, including fields, methods, and classes. The
set of features considered here are the average wordsize (in bytes), the
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(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.2: Distribution of methods with length 1 in obfuscated (a) and
non-obfuscated (b) apps.

average distance of consecutive extracted identifiers, and the number of
identifiers with length 1, 2 and 3. To compute the distance between two
identifiers, we first represent each string as a vector of natural numbers,
where each component is given by the corresponding byte in the string.
If they are not of the same length, the shorter identifier is right-padded by
blank spaces. After this, the d1 distance between both vectors is computed:

d1(A, B) =
n∑

i=1
|ai − bi|, (5.1)

where A = (a1, . . . , an) and B = (b1, . . . , bn) are the byte-level repre-
sentations of both strings. Since we operate at the byte level, we refer to
this as the ASCII distance of the two identifiers.

The rationale for the ASCII distance is the following. When using
renaming, identifiers are normally replaced by repetitive or random se-
quences of characters in the English alphabet in Android benign apps, and
special characters (encoded in Unicode) in malware samples [7]. Thus,
consecutive extracted identifiers in ID-renamed malware samples usually
have a small ASCII distance compared to the ones in benign apps, as shown
in Tables 5.3 and 5.4. Moreover, based on our observations (Fig. 5.2), the
number of identifiers with lengths lower than 3 were much more frequent
in obfuscated samples than in benign apps, which provides additional sup-
port to our logic to choose this set of features for identifier renaming de-
tection.
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Table 5.3: Examples of identifiers extracted from an obfuscated malware
sample in the Obad family.

App MD5 = f7be25e4f19a3a82d2e206de8ac979c8
List of fields List of methods List of classes

cOIcOOo ocCCIlI ololCCOc
IOocoOI onOpen AdminReceiver
IoOoOIOI onUpgrade cOoOICO
oclClII OoCOocll IOocoOI
OoCOocll OOIlIcCc OlCCcIl
OocIOCIo onCreate OcIcoOlc
OlICCCco cClccOlc OoCOocll
CICCCcCI CcOCoIcO OOIlIcCc
occcclc oIOocIlo OocIOCIo
oOCCOOI CoOOoOo CIOIIolc
oCOllOO oIlclcIc CICCCcCI
CIOIIolc ICclCcoC olcCIIC

Table 5.4: Examples of identifiers extracted from a non-obfuscated mal-
ware sample in the Univert family.

App MD5 = dadba61b42e3129dcbb2c37ba7177290
List of fields List of methods List of classes

mBigLargeIcon getItemId KeyEventCompatEclair
mParentFragment isSingleShare ViewPager
mSetIndicatorInfo performPause ContextCompat
EDGE_ALL makeMainSelectorActivity NotificationCompat
mPendingBroadcasts setDrawerShadow ParcelableCompat
TRANSIT_NONE getCallingPackage ScrollerCompat
mHandler getConstantState TransportPerformer
mTaskInvoked setUserVisibleHint PagerTitleStrip
mNumOp setMenuVisibility TimeUtils
PRIORITY_DEFAULT setOverScrollMode BackStackRecord
ACTIVITY_CREATED dismissAllowingStateLoss FileProvider
children dataToString SupportMenu

5.3.4.2 Features for String Encryption Detection

For string encryption detection, we considered 29 different features at the
beginning, all of which were obtained from the app bytecode. The set of
initial features we considered included: the average entropy, the average
wordsize, the average length, the average number of equals (’=’), the aver-
age number of dashes (’-’), the average number of slashes (’/’), the average
number of pluses (’+’), the average sum of repetitive characters which are
appear more than once in a string, and the frequency of 21 different spe-
cial characters, including underlines and spaces. However, we were left
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Table 5.5: A snapshot of constant strings extracted from obfuscated mal-
ware in the Kyview and Triada families.

App MD5: 9f973194e1d2db2c8d37571b1b8afa49, Family: Kyview

AES
AES/CBC/PKCS5Padding
ARuhFl7nBw/97YxsDjOCIqF0d9D2SpkzcWN42U/KR6Q=
KXbn1K9Cz2ZgeOTJa+Veo9TtqgqFQ49etShsU9z+UAP37syBIxS/qy9gK8yB2kKw
cbSAmn5ZqTUlLC/bgOZkEzXGEOY21uWifgdKJs9yk7A=
XONjIhr7f5+v7VYE2sRnrybwgpe9YIOqpcEHDUiel7EzNqAyI0RSFuWdEz2ratN+
LbZjxcpsz6RheqLbO48YwKTUVh9wQrFoY7gJK2jAZFI=
/XHxH5XHwv8SxKlJV4XyYOIB7MuqmSwqMacPj1bbgbS8IA8tETEArriXswHCehFP
Jil+B/2MHKx+6dpy/2xm493DojzmiB3wB5+eGz7hPDU=

App MD5: a19f784807c3249837135de9b1a43fdf, Family: Triada

Sw4QQ1hFGFJJF1UWDwN1dnYKVQQGJAJDWwMUYkZVEUYHQg==
Wg4WQ2hRRkNySV8BOUNVX1U=
UQ4IGU5EGEZYF1UWDwN1dnYKVQQGJAJDWwMUYkZVEUYHQg==
VxkRaFZCUWxdS1sWOUtdXlU8QwAPAw==

with only 8 features after applying feature engineering techniques, namely
the average entropy, the average wordsize, the average length of strings,
the average number of equals, dashes, slashes, and pluses, and, finally, the
average sum of repetitive characters. This was done using a tree-based fea-
ture selection algorithm which scores features based on their importance
and discards irrelevant ones [226].

We chose this set of features by visually analyzing a number of strings
from both obfuscated and non-obfuscated samples. Critical constant
strings in Android malware are normally encrypted by either AES or
DES encryption algorithms [79]. Also, they are commonly encoded using
Base64 scheme. These block cipher algorithms, depending on the mode
which is adopted, require the input string to be an exact multiple of the
block size. If the string to be encrypted is not an exact multiple, it is
padded before encrypting by adding a padding string (or a pad byte). In
our studies, we observed many strings in obfuscated samples which were
padded by using ’=’ or ’==’ strings (Table 5.5). Furthermore, equal signs,
dashes, slashes, and plus signs are observed mostly in obfuscated strings
than in non-obfuscated ones.

5.3.4.3 Features for Control Flow Obfuscation Detection

Finally, to detect control flow obfuscation, features are extracted from both
Dalvik bytecode and the CFG of applications. Seven different features are
extracted here: the number of nodes; the number of sinks (i.e. nodes with
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an outdegree = 0); the number of edges from the CFG of each applica-
tion; the number of goto instructions per line of code; the number of NOP
instructions per line of code; and the total number of lines of code from
the app’s bytecode. Additionally, the app’s file size is considered because
some advanced types of Android malware pack their native code in the
resource or assets directories and decrypt them at runtime using a decryp-
tion stub [31] [151]. So, this feature compensates for the limitations of
dexdump in accurately measuring the lines of code from sophisticated An-
droid malware specimens.

Although features for control flow obfuscation detection are extracted
from both bytecode and the CFG of apps, we had the intuition that some
code features may overlap with others extracted from CFG. For instance,
goto instructions simply add more branches to the CFG, and, thus, increase
the in-degree or out-degree of some nodes. However, extracting features
from both bytecode and the CFG guarantees that no features will be missed
due to the limitations that may exist in Android reverse engineering tools.

5.3.5 Classification Algorithms and Hyper-Parameter Tun-
ing

The second critical decision in learning-based systems is to choose an ap-
propriate classifier to label unseen samples. Additionally, most of these
classifiers have various parameters which have significant impacts on their
performance. They are commonly known as classifiers’ hyper-parameters
which need to be set wisely based on the application context. One simple
example is the number of neighbors (k) in the famous k-Nearest Neighbor
(or kNN) learning algorithm [227].

Three strategies are usually adopted to tune classifiers’ hyper-
parameters [228]. In the first approach, all combinations of hyper-
parameter values are tried in a greedy way to find the best possible set
of combinations. In the second approach, all combinations are explored
again but in a random fashion. The advantage of this method is that it may
find the optimal solution faster than a greedy search. The third strategy
is to use a random search but with a limited number of trials, which will
make the algorithm even faster but does not guarantee finding the optimal
set of combinations.
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In ANDRODET, all classifiers update their models while observing new
applications based on online learning algorithms. To do this, we have
used a wide variety of algorithms provided by MOA, including Hoeffding
Tree [229], Weighted Majority Algorithm [230], Leveraging Bag [231],
LearnNSE [232], Stochastic Gradient Descent (SGD) [125], and Naive
Bayes [233]. Moreover, we have extended this tool to enable us choos-
ing the best possible hyper-parameters for the classifiers by developing a
hyper-parameter tuning procedure. From the three discussed strategies, we
have chosen limited random search, which gave us a satisfactory classifi-
cation performance in a reasonable period of time.

5.4 Evaluation

This section presents the evaluation results. We first present the experi-
mental settings. Then we evaluate the performance of each ANDRODET’s
detection module separately (Sections 5.4.2 - 5.4.4). Finally, we consider
cases in which apps may be obfuscated with more than one technique (Sec-
tion 5.4.5).

Additionally, we test the accuracy of our system on unseen apps (as
discussed in Section 5.3.3) and compare the results with a similar system
based on batch learning algorithms. We adopt the same strategy here, i.e.,
we initially test the performance of each module on unseen apps (Sections
5.4.6.1 - 5.4.6.3), and, then, we present the accuracy of system when apps
may use a combination of obfuscation techniques (Sec. 5.4.6.4). We finally
compare the performances of both systems in terms of time and memory
usage in Section 5.4.7.

5.4.1 Experimental Settings

Experiments were carried out on an Ubuntu server with 15 processors and
24 GB of RAM. We use Massive Online Analysis (MOA) in its version
as of February 2018 [113] to analyze the accuracy of ANDRODET. Also,
to compare its efficiency with a similar system based on batch learning
algorithms, we leverage the Auto-Tuned Models (ATM) tool [217], a re-
cently proposed tool for machine learning and hyper-parameter tuning.
We have selected various learning algorithms from this tool, namely kNN,
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Support Vector Machines (SVMs) [234], decision trees [235], and random
forests [236].

For online learning algorithms, we have used leveraging bag, and, from
batch learning ones, we have finally selected SVM after observing the per-
formances of classifiers. Moreover, to have a fair comparison, we first tune
the hyper-parameters of classifiers (Figure 5.3) in both MOA and ATM fol-
lowing a limited random search strategy with 200 trials (known as budget
in ATM ). This helps us to obtain fairly well combination of parameters
for each learning algorithm.

Figure 5.3: Data preparation (left) and the overall architecture of clas-
sification process (right), including parameter tuning, model training and
testing. White squares: non-obfuscated apps; dark blue squares: apps with
string encryption obfuscation; dashed blue squares: apps with ID renaming
obfuscation.

5.4.2 Identifier Renaming Detection

We use the full AMD dataset in order to inspect how the accuracy of iden-
tifier renaming module evolves over time using the EvaluatePrequential
class of MOA [237]. This class evaluates a classifier on a stream by test-
ing, and, then, training with each sample in the sequence. Experimental re-
sults show that ANDRODET identifier renaming detection module is able
to predict whether an app is obfuscated or not with a high accuracy im-
mediately after observing few samples. As it is shown in Fig. 5.4a, the
accuracy reaches around 71% after observing only 25 samples. Also, it
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improves step by step by observing more samples from the dataset. Our
module to detect identifier renaming obfuscation could achieve an average
accuracy of 92.02% over the whole AMD dataset.

The number of samples correctly classified (TP) as obfuscated is 5758,
and 631 samples were incorrectly classified (FP) as obfuscated (Table 5.6).
One reason is that some obfuscators use a different strategy to rename key
identifiers of malware samples such as using non-ASCII characters. The
second reason is that non-obfuscated malware specimens do contain ob-
fuscated identifiers as well in the majority of cases mainly because they
import some classes from Android or Google libraries which are already
obfuscated.

5.4.3 String Encryption Detection

As malware samples use a wide range of cryptographic functions, classi-
fying apps as either obfuscated or non-obfuscated is not straightforward
even if a fine set of features is considered. Also, advanced malware pack
the original .dex file of applications and decrypt them at run-time by using
a wrapper; therefore, they put a big challenge ahead of systems which rely
heavily on features extracted before runtime.

Similar to identifier renaming detection, we use the full AMD dataset to
evaluate the accuracy of our string encryption detection module when new
apps are fed into the system over time. Our module for string encryption
detection could achieve an average accuracy of 81.41% as shown in Fig.
5.4b. It improves soon after observing a few samples and increases up to
87.4% at maximum.

In total, 5499 samples were correctly classified (TP) as obfuscated, and
906 apps were mistakenly classified (FP) as obfuscated. In our studies, we
found that malware samples make use of a wide range of cryptographic
functions and encryption strategies which makes it challenging to consider
a proper set of features in order to detect this particular type of obfusca-
tion. A very simple way to do this is to simply extract some features from
encrypted strings. Another advanced way is to extract features from en-
cryption/decryption functions which are not always easily extractable as
they are sometimes hidden in resource directory and are dynamically exer-
cised at run-time.
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(a) Identifier renaming detection
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(b) String encryption detection
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(c) Control flow obfuscation detection

Figure 5.4: Evolution of detector modules’ accuracies over time.

Table 5.6: Performance metrics for each detection module.

Detector TPR (Recall) FPR (Inverse Recall) Precision F1 Score
Identifier Renaming 0.91 0.02 0.95 0.92
String Encryption 0.80 0.08 0.78 0.79
Control Flow Obfuscation 0.66 0.1 0.7 0.67
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5.4.4 Control Flow Obfuscation Detection
Due to the limited number of samples we had for this type of obfusca-
tion, we assess the average accuracy of our control flow obfuscation de-
tection module over time only based on 80% of the applications collected
here, and we keep the 20% remaining apps to test our system over unseen
apps (recall Section 5.3.3) in the next sections (Section 5.4.6.3 and Section
5.4.6.4). Experimental results show that the corresponding ANDRODET

module for control flow obfuscation detection is able to identify obfus-
cated apps with an average accuracy of 68.32% and a maximum accuracy
of 73.4% on the final samples (Fig. 5.4c). This seems to be reasonable due
to the limited number of samples we could feed into this module. Also,
maximum accuracy percentage shows that this module would probably be
able to have a better performance if it is fed with more training samples
with a proper distribution of features.

Control flow obfuscation detection module could correctly label 898
samples as obfuscated (TP). Also, 429 samples were wrongly classified
as obfuscated (FP). The main important reason for these relatively smaller
values comparing with the ones achieved for identifier renaming and string
encryption detection modules is the small amount of apps we had as ground
truth for this type of obfuscation.

Generally speaking, accuracy plots for each of the obfuscation detection
modules demonstrate the improvement of online learning algorithms over
time when they observe more and more samples considering the fact that
they do not need to be re-trained.

5.4.5 Performance Evaluation for Combined Techniques
To measure the performance of our system when apps are obfuscated using
a combination of techniques, we extend the binary classification problem
of each module to a multi-label classification problem and calculate the
global accuracy using the same strategy we adopted for individual mod-
ules. Here, each detector module is tested and trained separately using the
EvaluatePrequential class.

To achieve our goal and to be able to create a multi-label confusion ma-
trix, we consider the presented encoding in Fig. 5.5. Thus, total number of
combinations is 8 each of which is a binary representation of techniques
used to obfuscate an application. For instance, 6 (’110’) is a label which
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shows that an app is obfuscated using both identifier renaming and string
encryption techniques, and 0 (’000’) demonstrates that the app is not ob-
fuscated with any of these three techniques. However, we have excluded
those labels for which we did not have any ground truth in our datasets.

Figure 5.5: Multi-label encoding of obfuscation techniques.

Table 5.7: Confusion matrix for multi-label classification with MOA (real
classes on rows and predicted classes on columns).

N CF SE IR IR+SE
N 10,313 0 715 368 719

CF 210 758 0 0 142
SE 392 0 5,784 242 701
IR 103 0 99 5,513 277

IR+SE 309 0 300 213 1,224
N: No Obfuscation,

CF: Control Flow Obfuscation. SE: String Encryption,
IR: Identifier Renaming,

As it is clear from the confusion matrix (Table 5.7), the performance of
each module obtained by dividing the true positive by false negative for
that obfuscation technique is close to the values we separately evaluate on
the previous sections. Also, the global accuracy of ANDRODET is approx-
imately 80.66% considering the fact that some apps could be obfuscated
with more than one technique. The prediction accuracy for apps which are
obfuscated by identifier renaming and string encryption at the same time
is 76.68% which stems in the fact that we had limited samples obfuscated
with both techniques as ground truth.

5.4.6 Comparison Against Batch Learning Algorithms
This section compares the accuracy of our system to detect each type of
obfuscation with a similar system based on batch learning algorithms over
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unseen applications. To do so, we make use of a new dataset, known as
PraGuard (recall Section 5.3.3). Also, we present and discuss the per-
formance of both systems when a combination of techniques are used to
obfuscate Android apps. Table 5.8 summarizes the results.

5.4.6.1 Identifier Renaming Detection

To compare the performance of ANDRODET’s identifier renaming detec-
tion module with a similar system based on batch learning algorithms, we
do the following experiment. We first feed our online learning module with
a combined dataset of apps from AMD and PraGuard to measure its aver-
age accuracy using MOA. Then, we train another module based on batch
learning algorithms with AMD to test it later over the PraGuard dataset
using ATM tool.

Our results show that the online learning module improves its accuracy
to 95.1% by observing further samples from PraGuard dataset. One the
other hand, the module based on batch learning could achieve an accuracy
of 91.5% (Table 5.8). The results obtained here highlights the adaptability
power of online learning systems versus batch learning ones when new
samples appear over time.

Table 5.8: Comparison of the accuracy between two systems for Android
obfuscation detection based on online and batch learning algorithms (max-
imum accuracies).

Identifier Renaming String Encryption Control Flow Obfuscation
MOA ATM MOA ATM MOA ATM

95.1% 91.5% 85.6% 81.2% 73.7% 87.9%

5.4.6.2 String Encryption Detection

We adopt a Similar strategy to compare the performance of our online
learning based module with another module which makes use of batch
learning for string encryption detection on unseen applications, i.e., we
observe how the accuracy of our learning module evolves over time when
the new dataset (PraGuard) is fed into the system. We then train the batch
learning based module with the AMD dataset and test it over PraGuard
dataset to compare their accuracies.
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Results confirm that the online module is able to update its model in-
crementally by observing new samples, and, thus, could reach an accuracy
of 85.6% compared to the batch learning module with a lower accuracy.
Although the difference is not big, this result bolds the advantage of on-
line learning algorithms over batch learning ones in improving their built
model without the need of time consuming training procedure.

5.4.6.3 Control Flow Obfuscation Detection

Due to the limited available ground truth for control flow obfuscated apps,
80% (2220 apps) of the apps (1,387 obfuscated apps from AMD and 1,387
non-obfuscated apps from F-Droid) is used to evaluate our online learning
module (as performed in Sec. 5.4.4), and 20% (554 apps) is used to inspect
how our system’s accuracy evolves when new apps appear, and, also, to
compare its performance with a similar module based on batch learning
algorithms.

The accuracies obtained from both systems show that the batch learning
based module can predict the label of unseen apps with a higher accuracy.
However, there is a major difference between our test samples used for this
module with the other two modules (Sec. 5.4.6.1 and 5.4.6.2). The differ-
ence is that unseen apps are fed into the system from the same datasets
(AMD and F-Droid) which were used for evaluating our online module,
and, thus, are expected to have similar features. In other words, unseen
apps do not add much information to the previously built model of our
module.

5.4.6.4 Combined Obfuscation Techniques

In a final assessment, we repeat the same experiment as we did in Sec.
5.4.5, but on unseen applications. Thus, we use the PraGuard dataset as
ground truth for identifier renaming and string encryption techniques, and
the remaining 20% of apps from AMD and F-Droid as ground truth for
control flow obfuscation. We compare our results with another system
based on batch learning algorithms. For ANDRODET, we inspect how our
system can extend its built model when new apps are fed into the system
and when they might use a variety of obfuscation techniques.

As it is clear from the confusion matrices of the two detection systems
(Table 5.9 and Table 5.10), the global accuracy of ANDRODET when it is
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fed with more unseen applications and is tested at the same time is around
83.34% which shows a minor improvement comparing with the one ob-
tained in Section 5.4.5. On the contrary, the global accuracy of a similar
system based on batch learning algorithms is around 85.64%. Also, accu-
racies of detector modules which can be obtained from these matrices are
aligned with the results we achieved before (Table 5.8).

Table 5.9: Confusion matrix for multi-label classification with MOA
on unseen applications (real classes on rows and predicted classes on
columns).

N CF SE IR IR+SE
N 11,913 0 715 374 887

CF 145 1,018 0 0 224
SE 459 0 7,196 368 591
IR 97 0 166 7,049 175

IR+SE 229 0 216 267 2,829
N: No Obfuscation,

IR: Identifier Renaming,
SE: String Encryption,

CF: Control Flow Obfuscation.

In particular, the individual accuracy of the control flow obfuscation de-
tection module on unseen applications using batch learning algorithms is
slightly higher than the accuracy of the same module based on online learn-
ing algorithms. This is vice versa for the other two obfuscation techniques,
namely identifier renaming and string encryption, i.e. the accuracies of
detector modules which make use of online learning algorithms are higher
than the same modules which are based on batch learning algorithms. Also,
the system which works based on batch learning algorithms outperforms
ANDRODET when it comes to apps that are obfuscated by both identifier
renaming and string encryption techniques.

5.4.7 Performance Comparison: Time and Memory

One key advantage of using online learning algorithms in classification is
their ability to update their model upon observing new samples opposite
to batch learning algorithms which do need to be re-trained after specific
intervals in order to preserve their accuracies over time. Re-training pro-
cess needs a considerable amount of memory as well. Thus, to compare
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Table 5.10: Confusion matrix for multi-label classification with ATM
on unseen applications (real classes on rows and predicted classes on
columns).

N CF SE IR IR+SE
N 12,021 0 709 369 790

CF 45 1,216 0 0 126
SE 459 0 7,146 368 641
IR 92 0 149 6,877 369

IR+SE 254 0 216 267 2,804
N: No Obfuscation,

IR: Identifier Renaming,
SE: String Encryption,

CF: Control Flow Obfuscation.

ANDRODET with a similar system based on batch learning algorithms (the
system discussed in Section 5.4.6.4) in terms of time and memory we con-
duct the following experiment.

For time analysis, we assume that the batch learning system needs to be
re-trained after classifying every 1000 samples (1000 epochs). With this
assumption, we start classifying the whole applications (recall Table 5.1);
but, here, the system is re-trained after classifying every 1000 samples.
Thus, the time for each epoch is calculated by summing up the time which
is needed to train, and, then, test the system over next 1000 samples. And,
the final cumulative time is the sum of time spent in all epochs until it
classifies all applications. For ANDRODET, each epoch’s time is obtained
by only measuring the time which is used for classification. We analyze
memory usage based on the same assumption as shown Fig. 5.6. Here, we
exclude the amount of time and memory which is used for hyper-parameter
tuning in both systems. However, we consider the time which is needed to
train both systems at the beginning.

As it is clear, ANDRODET outperforms a similar system based on batch
learning algorithms in both time and memory consumption on a medium
size dataset. If the dataset size increases time by time, and if the built model
is needed to be updated in shorter intervals, this difference will most prob-
ably be higher between online learning systems and batch learning ones.
Another important aspect is to inspect the amount of memory which is con-
sumed as the dataset grows in size over time. Based on our observations,
ANDRODET consumed 33.79 MB at maximum as the dataset increased
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Figure 5.6: Comparison of time and memory consumption between online
learning algorithms using MOA (a) and batch learning algorithms using
ATM (b) for Android obfuscation detection.

to around 34K apps. In contrary, the system based on batch learning algo-
rithms consumed 71.89 MB of RAM memory as more samples were added
to the training set over time.

5.5 Threats to Validity

This section discusses a number of potential limitations we encountered
in our work. Our datasets contain two main issues that could impact the
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validity of our results. On the one hand, they do not contain a uniform
distribution for all combinations of obfuscation techniques. For example,
there is not a sample in our datasets in which string encryption and control
flow obfuscation have been jointly applied. To the best of our knowledge,
there is no dataset that contains such a type of application. Therefore,
the analysis on the effectiveness of this approach for these types is left for
future work. On the other hand, our datasets contain apps which are control
flow obfuscated using a single tool (i.e., Allatori). As a consequence, apps
which are obfuscated with other tools may evade detection by ANDRODET

if the techniques they employ are quite different.
State-of-the-art Android reverse engineering tools are shown not to

work properly in all cases. Thus, systems that make use of features ex-
tracted by these tools are prone to errors. For instance, disassemblers may
make mistakes which could in turn hide information to the systems that use
the result of disassembly. Also, tools which extract control flow graphs are
not perfect, especially when apps adopt advanced anti-analysis techniques.

Advanced code obfuscation techniques in Android may use a combi-
nation of transformations [238]. Although ANDRODET is modular and
can detect if a malware is obfuscated using more than one technique, it
does not consider all possible combinations which might exist in the wild.
However, there is not a comprehensive and systematic study to report the
prevalence of adopting various combinations of Android obfuscation tech-
niques at the moment. Moreover, advanced malware specimens use a wide
range of techniques to evade malware analysis systems which can affect
our system.

5.6 Related Work
Many prior works have attempted to address the problem of handling ob-
fuscation in Android. On the one hand, the goal of several works is to
carry out a process without any impact despite of obfuscation. Particularly,
a matter of interest is malware analysis. In this regard, [239] propose Re-
vealDroid, a system for malware detection and family identification in an
obfuscation-resilient manner. On the other hand, Zhang et al. aim to detect
repackaged applications by inspecting the user interactions in the graphical
interface [240]. The same problem is addressed by CodeMatch, which is
able to deal with other types of obfuscation such as code slicing [241].
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The works described so far consider obfuscation as an obstacle to be
saved to achieve a goal of a different nature. In this work, the detection of
obfuscation is indeed the target of the approach. In this regard, two actions
have been considered in other works, either detecting obfuscation or even
attempting to deobfuscate the app. Each one is described in the following.

With respect to obfuscation detection, in 2018 Dong et al. have carried
out a large-scale investigation. They focus on four types of obfuscation,
namely identifier renaming, string encryption, Java reflection and packing.
For each of them, they propose a lightweight detector that leverages signa-
tures and machine learning techniques. Their approach is assessed using
a dataset formed by 114,560 apps from both goodware and malware. To
detect identifier renaming and string encryption, they use Support Vector
Machine (SVM) as technique and 3-grams as features. To date, their work
is the most similar to ours. In a similar vein, Wang and Rountev attempted
to detect the tool that has been applied. For this purpose, they take 282
apps from F-Droid and obfuscate them using different tools using several
configurations. These configurations indicate the type of obfuscation ap-
plied. Interestingly, these configurations involve identifier renaming, string
encryption, package modification and control flow obfuscation. Using 10
sets of strings (e.g., method names, package names, etc.), their approach
also relies upon SVMs [20]. In their approach, they reach 97.5 % of ac-
curacy for obfuscator detector, and similar rates when it comes to detect
which configuration has been applied in each tool. As compared to this
work, their dataset is significantly smaller. Moreover, they do not deal
with the re-training aspect.

Concerning deobfuscation attempts, [242] presents early results on de-
obfuscation against ProGuard tool. Their approach is based on comparing
the similarity of some portions of the code against a database filled up
with unobfuscated code. On the other hand, Yoo et al. propose a string
deobfuscation technique to improve malware detection ratios [243]. This
technique is based on running the app, intercepting all results coming from
functions returning strings, and, then, repackaging the app replacing the
original strings with these intercepted results. In this way, no matter what
kind of encryption is applied, the tool is able to get the decrypted value.
Their method outperforms other tool-specific mechanisms such as dex-
oracle2. Another deobfuscation work is presented by Bischel et al. [244].

2https://github.com/CalebFenton/dex-oracle , last accessed March 2018
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Their focus is on identifier renaming obfuscation, and their approach bases
on comparing a given identifier with a large database of non-obfuscated
ones. As compared to these attempts, our proposal does not aim to deob-
fuscate, but can serve as starting point to address this in future. In partic-
ular, the output of ANDRODET is useful to spot the type of obfuscation at
stake, which can be considered to apply focused deobfuscation techniques.
Moreover, our approach considers several types of obfuscation.

5.7 Conclusion

Obfuscation is one of the main obstacles when it comes to Android app
analysis. Thus, having a mechanism to detect the type of existing obfusca-
tion (if any) can contribute saving resources for analysis. Indeed, particular
analysis techniques may be applied once this detection has been done. To
contribute in this direction, in this work ANDRODET has been proposed.
ANDRODET shows promising accuracy ratios for detecting identifier re-
naming, string encryption, and control flow obfuscation. Moreover, it re-
quires moderate training needs and can be configured to work in online
basis, that is, with incremental training. To foster further research in this
area, both ANDRODET sources and the experimental dataset are freely
available.

Several issues are devised as future research directions. First, address-
ing other types of obfuscation. Second, refining the feature set to improve
the current accuracy of modules. Last but not least, extracting features by
directly parsing the header of Dex files which will save more time and will
compensate the limitations of Android reverse engineering tools.

5.8 Supplemental Data

5.8.1 Distribution of Features for Identifier Renaming De-
tection

This section presents the distribution of attributes in the methods and
classes which were extracted from obfuscated and non-obfuscated samples
of AMD dataset.
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5. AndrODet: An Adaptive Android Obfuscation Detector

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.7: Distribution of the average wordsize of methods in (a) obfus-
cated and (b) non-obfuscated apps.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.8: Distribution of the average ASCII distances between consec-
utive extracted methods in (a) obfuscated and (b) non-obfuscated apps.
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5. AndrODet: An Adaptive Android Obfuscation Detector

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.9: Distribution of methods with length 1 in (a) obfuscated and
(b) non-obfuscated apps.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.10: Distribution of methods with length 2 in (a) obfuscated and
(b) non-obfuscated apps.
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5. AndrODet: An Adaptive Android Obfuscation Detector

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.11: Distribution of methods with length 3 in (a) obfuscated and
(b) non-obfuscated apps.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.12: Distribution of the average wordsize of classes in (a) obfus-
cated and (b) non-obfuscated apps.
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5. AndrODet: An Adaptive Android Obfuscation Detector

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.13: Distribution of the average ASCII distances between consec-
utive extracted classes in (a) obfuscated and (b) non-obfuscated apps.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.14: Distribution of classes with length 1 in (a) obfuscated and (b)
non-obfuscated apps.
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5. AndrODet: An Adaptive Android Obfuscation Detector

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.15: Distribution of classes with length 2 in (a) obfuscated and (b)
non-obfuscated apps.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.16: Distribution of classes with length 3 in (a) obfuscated and (b)
non-obfuscated apps.

143



5. AndrODet: An Adaptive Android Obfuscation Detector

5.8.2 Distribution of Features for String Encryption De-
tection

This section presents the distribution of attributes in the strings which were
extracted from obfuscated and non-obfuscated samples of AMD dataset.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.17: Distribution of the average entropy of strings in (a) obfus-
cated and (b) non-obfuscated apps.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.18: Distribution of the average wordsize of strings in (a) obfus-
cated and (b) non-obfuscated apps.
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5. AndrODet: An Adaptive Android Obfuscation Detector

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.19: Distribution of the average length of strings in (a) obfuscated
and (b) non-obfuscated apps.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.20: Distribution of the average number of ’=’ characters in (a)
obfuscated and (b) non-obfuscated apps.
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5. AndrODet: An Adaptive Android Obfuscation Detector

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.21: Distribution of the average number of ’-’ characters in (a)
obfuscated and (b) non-obfuscated apps.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.22: Distribution of the average number of ’/’ characters in (a)
obfuscated and (b) non-obfuscated apps.
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5. AndrODet: An Adaptive Android Obfuscation Detector

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.23: Distribution of the average number of ’+’ characters in (a)
obfuscated and (b) non-obfuscated apps.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.24: Distribution of the average sum of repetitive characters in (a)
obfuscated and (b) non-obfuscated apps.
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5. AndrODet: An Adaptive Android Obfuscation Detector

5.8.3 Distribution of Features for Control Flow Obfusca-
tion Detection

This section presents the distribution of attributes extracted from the
CFG and Dalvik bytecode of obfuscated (from AMD dataset) and non-
obfuscated (from F-Droid dataset) samples.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.25: Distribution of the number of nodes in the CFG of (a) obfus-
cated and (b) non-obfuscated apps.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.26: Distribution of the number of sinks in the CFG of (a) obfus-
cated and (b) non-obfuscated apps.
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5. AndrODet: An Adaptive Android Obfuscation Detector

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.27: Distribution of the number of edges in the CFG of (a) obfus-
cated and (b) non-obfuscated apps.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.28: Distribution of the number of Goto instructions per line of
code in (a) obfuscated and (b) non-obfuscated apps.
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5. AndrODet: An Adaptive Android Obfuscation Detector

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.29: Distribution of the number of NOP instructions per line of
code in (a) obfuscated and (b) non-obfuscated apps.

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.30: Distribution of the total number of lines of code in (a) obfus-
cated and (b) non-obfuscated apps.
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5. AndrODet: An Adaptive Android Obfuscation Detector

(a) Obfuscated Applications. (b) Non-Obfuscated Applications.

Figure 5.31: Distribution of the total number of lines of code in (a) obfus-
cated and (b) non-obfuscated apps.
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6
Conclusions

The main focus of this dissertation is on Android malware triage due to the
limitations of both static and dynamic analysis tools. We have designed
and implemented a novel tool, called TriFlow, that automatically scores
Android apps based on a forecast of their information flows and their as-
sociated risk. Our approach relies on a probabilistic model for informa-
tion flows and a measure of how significant each flow is. Both items are
experimentally obtained from a dataset containing benign and malicious
apps. After this training phase, the models are used by a fast mechanism
to triage apps; thus, providing a queuing discipline for the pool of apps
waiting for a precise information flow analysis. Our experimental results
suggest that TriFlow provides a sensible ordering based on the potential
interest of the app. Given the huge amount of computational resources de-
manded by information flow analysis tools, we believe this could be very
helpful to maximize the expected utility when dealing with large pools of
apps. Additionally, TriFlow could be used as a standalone risk metric for
Android apps, providing a complementary perspective to alternative risk
assessment approaches based on permissions and other static features. Fi-
nally, to encourage further research in this area, we have made our results
and implementation available online.

During our studies, we found that malware labels are not necessarily
consistent with apps’ behavior in different datasets due to the lack of ap-
propriate standards to name malware samples. Thus, in our second con-
tribution, we have discussed the problem of how family labels in Android
malware relate to the behavior of their samples. Our approach relies on
modeling apps through their information flows and then characterizing be-
havior by patterns of such flows. We have also conducted a cluster analysis
to identify groups of apps whose patterns of information flows are similar.
Our experimental results show that the notion of Android malware family
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does not necessarily imply that all of its samples behave similarly, and also
that different malware families sometimes behave identically.

Another barrier we encountered during our studies on Android malware
triage was the vast application of anti-analysis techniques in general and,
obfuscation in particular, to Android malware by both commercial and
non-commercial tools which hindered their accurate analysis. Therefore,
in our last contribution, we have developed and presented AndrODet, a
tool for detecting three common obfuscation techniques in Android apps,
including identifier renaming, string encryption, and control flow obfusca-
tion. We believe this tool is one of the pioneers in detecting obfuscation
in Android apps and is a big step forward to remove the barriers currently
exist in Android malware analysis. AndrODet requires moderate training
needs and can be configured to work in online basis, that is, with incremen-
tal training. To foster further research in this area, both AndrODet sources
and the experimental dataset have been made freely available.

6.1 Awards
The work contained in this dissertation has resulted in two outstanding and
competitive awards as follows:

• Third Place Award,
From CSAW-Europe Best Applied Security Research Competition,
For the paper, “TriFlow: Triaging Android Applications using Spec-
ulative Information Flows”

• Best Previously Published Paper Award,
From 4th Spanish National Cybersecurity Research Conference
(JNIC),
For the paper, “A Summary of TriFlow: Triaging Android Applica-
tions using Speculative Information Flows”

6.2 Tools
Two well-documented tools have also been released for public use in order
to foster research in related areas. Below, we provide the readers with a
summary of their functionalities and their access links:
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• TriFlow:
This tool builds up an efficient probabilistic model to predict the oc-
currence of information flows in Android apps. It also weight flows
based on their prevalence in Android malware and benign apps.
Then, it triages new apps based on a forecast of flows that may ap-
pear in the apps and their amount of maliciousness. The tool is
continuously watched and updated for better performance upon re-
searchers’ feedback.,
Download Link: https://github.com/OMirzaei/TriFlow

• AndrODet:
This tool is an adaptive modular system to detect three common
types of obfuscation in Android apps, including identifier renaming,
string encryption and control flow obfuscation. A separate module
has been considered to detect each type of obfuscation by extracting
relevant features. Each module improves its accuracy over time by
observing new samples and learning from them on the fly without
the need to be re-trained. AndrODet can be easily modified to detect
more types of obfuscation techniques.,
Download Link: https://github.com/OMirzaei/AndrODet

6.3 Research Visits
The following universities were also visited during this PhD educational
period:

• University College London (UCL):
During my PhD, I have visited Dr. Gianluca Stringhini at the
Information Security Research Group from August to November
2017. Since then, we have started a collaboration which is still
ongoing and is aimed to lead to a top publication.

6.4 Future Work
Though Android malware has been studied for some years and several con-
tributions are made to improve the security of smartphones running An-
droid OS, this area of research is not yet mature enough as we still see
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attack reports on a daily basis. Based on the results and feedback we ob-
tained from this thesis, we highlight and present some areas that can be
explored as future works.

Obfuscation. Based on our observations, code obfuscation is one of the
most prevalent anti-analysis techniques used by malware to evade analy-
sis. Moreover, some malware use runtime-based obfuscation which makes
their inspection much harder. Though quite common, there is not a com-
prehensive study of obfuscation on big amount of apps in the wild, neither
an accurate tool to deobfuscate apps in order to facilitate their precise anal-
ysis. Although recent works have tried to address both runtime-based and
regular types of obfuscation such as identifier renaming and string encryp-
tion, their tools do have some shortcomings. We believe there is much
more room here to investigate different anti-analysis techniques which are
used by Android malware at the first step. Also, much more is needed to
be done to develop efficient obfuscation detection tools.

Packing. Packing is another common method used by malware to
evade static analysis tools. Recent works have studied this problem pre-
cisely and have publicly released some tools to detect and unpack Android
apps which are packed by different techniques. However, these tools have
shown to be not efficient for all virtual machines and all versions of An-
droid OS. Also, few of them have not been well supported and documented
as well. Thus, we believe more research works can be conducted in this
area too.

Ransomware. Security threat reports of most well-known cybersecu-
rity companies show that Android ransomware has increased in number
once again after its emergence in 2014. Android screen lockers were the
dominant types of malware in 2017 and other variants of ransomware are
appearing again in 2018. Based on these observations, we believe another
open area of research is to explore different types of Android ransomware
and to develop tools and countermeasures to defeat all types of threats
which may arise from this type of malware.

Mining Cryptocurrencies. By the appearance of different cryptocur-
rencies, including Bitcoin, Monero and Zcash, mining cryptocurrencies is
an appealing target for attackers. Although Google has recently banned
on-device mining on Android hardware, it still allows mining as long as
the processing takes place in the cloud. Furthermore, even though mining
requires a huge amount of processing power and vast networks of devices,
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significant worth of cryptocurrencies is a good motivator for attackers to
devise mining techniques on Android devices. We believe research com-
munity should begin exploring the usage of cryptocurrency mining in An-
droid malware and develop appropriate tools to block crytocurrency min-
ing on smartphones running Android operating system.
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