
Future Generation Computer Systems 90 (2019) 240–261

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

AndrODet: An adaptive Android obfuscation detector
O. Mirzaei ∗, J.M. de Fuentes, J. Tapiador, L. Gonzalez-Manzano
Computer Security Lab (COSEC), Universidad Carlos III de Madrid, Av. Universidad, 30. ES-28911 Leganes, Spain

h i g h l i g h t s

• An online learning system to detect 3 types of obfuscation in Android applications.
• ID-renaming detection module identifies obfuscated apps after observing few samples.
• String encryption detection module improves its accuracy by observing few apps.
• Control flow obfuscation detection module reaches a good accuracy from few seen apps.
• The proposed system is compared with a batch-learning equivalent by time and memory.

a r t i c l e i n f o

Article history:
Received 17 April 2018
Received in revised form 21 June 2018
Accepted 28 July 2018
Available online xxxx

Keywords:
Obfuscation detection
Android
Machine learning
Malware

a b s t r a c t

Obfuscation techniques modify an app’s source (or machine) code in order to make it more difficult to
analyze. This is typically applied to protect intellectual property in benign apps, or to hinder the process of
extracting actionable information in the casemalware. Sincemalware analysis often requires considerable
resource investment, detecting the particular obfuscation technique used may contribute to apply the
right analysis tools, thus leading to some savings.

In this paper, we propose AndrODet, a mechanism to detect three popular types of obfuscation
in Android applications, namely identifier renaming, string encryption, and control flow obfuscation.
AndrODet leverages online learning techniques, thus being suitable for resource-limited environments
that need to operate in a continuous manner. We compare our results with a batch learning algorithm
using a dataset of 34,962 apps frombothmalware and benign apps. Experimental results show that online
learning approaches are not only able to compete with batch learning methods in terms of accuracy, but
they also save significant amount of time and computational resources. Particularly, AndrODet achieves
an accuracy of 92.02% for identifier renaming detection, 81.41% for string encryption detection, and 68.32%
for control flow obfuscation detection, on average. Also, the overall accuracy of the system when apps
might be obfuscated with more than one technique is around 80.66%.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The widespread usage of smartphones in various security-
sensitive operations in recent years, such as bank transactions and
online payments [1], requires that the security of these platforms
must be improved. This affects particularly to smartphones hosting
Android applications, as they have the biggest world-wide market
share [2]. More specifically, in recent years where re-packaging
popular smartphonebanking applications has raised in number [3],
hardening apps against reverse engineering has become increas-
ingly important.

Source code is an important intellectual property for both le-
gitimate software developers and malware writers; specifically,

∗ Corresponding author.
E-mail addresses: omid.mirzaei@uc3m.es (O. Mirzaei), jfuentes@inf.uc3m.es

(J.M. Fuentes), jestevez@inf.uc3m.es (J. Tapiador), lgmanzan@inf.uc3m.es
(L. Gonzalez-Manzano).

in Android operating system where the applications can be easily
decompiled for automated code analysis or visual inspection. In
the legitimate context, obfuscation prevents the competitors from
cloning or copying the source code with little effort and just by
adding very few extra features, while in a non-legitimate context,
it hides the apps’ semantics from analysts by increasing the cost of
reverse engineering and decompilation.

Obfuscation has been vastly applied to both malware and be-
nign Android applications in the last years [4]. In particular, three
types of obfuscation have been used, including identifier renaming,
string encryption, and control flow obfuscation mainly because
they are either available in free obfuscators or in the trial ver-
sions of commercial obfuscators. Also, they create a satisfactory
level of confusion in the app’s source code. Based on previous
researches [4], malware writers prefer to make use of more com-
plex renaming policies than legitimate software developers. Also,
string encryption is more popular in malware than in benign apps.
Finally, although control-flow obfuscation is only offered by few

https://doi.org/10.1016/j.future.2018.07.066
0167-739X/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

https://doi.org/10.1016/j.future.2018.07.066
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.07.066&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:omid.mirzaei@uc3m.es
mailto:jfuentes@inf.uc3m.es
mailto:jestevez@inf.uc3m.es
mailto:lgmanzan@inf.uc3m.es
https://doi.org/10.1016/j.future.2018.07.066
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261 241

commercial obfuscators, its prevalence and detection has not been
studied before.

Prevalent usage of obfuscation in Android malware has also
cast doubt on the reliability of most Android malware analysis
tools [5,6], and, in particular, static ones. The majority of these
tools rely upon some static features which are obtained from the
source code and are severely impacted by little transformations
in the source code [6]. Consequently, they are not resilient to
transformation attacks. Also, obfuscation has turned out to be a
new barrier to protect Android users [7], and, therefore, detecting
obfuscation is critical in understanding the underlying semantics
of malware specimens.

Previous works leverage on batch learning systems to detect
obfuscation. Thus, after extracting a set of features from the apps
pooled as training set, a system is trained to detect one or more
types of obfuscation [4,8]. While these systems offer promising ac-
curacy rates, they do have a major drawback. Systems which work
based on batch learning do not necessarily remain effective over
time — when new applications appear or when novel obfuscation
techniques are proposed. Thus, they must be eventually re-trained
with the updated dataset. This task is not feasible in a settingwhere
apps are developed and introduced constantly (as it currently
happens in both Android malware and benign apps). Also, most of
the recentworks have tried to detect trivial types of obfuscation on
a small dataset of apps. Finally, advanced obfuscation techniques
such as control flow obfuscation has not been addressed based on
a representative recent malware dataset [8].

To overcome these limitations, in this paper, we explore the use
of online learning algorithms through Data StreamMining (hence-
forth DSM) [9]. DSM can be seen as an adaptation of traditional
machine learning methods so as to be suitable for streams of ele-
ments. Remarkably, DSM approaches do not need to be re-trained,
as they continuously learn from the input samples. Leveraging
DSM, we aim to detect basic forms of obfuscation (particularly,
identifier renaming and string encryption), as well as the non-
trivial control flow obfuscation. To assess our approach, we con-
sider a dataset of 34,962 samples from both malware and benign
applications.

Overview of our system In this work, we propose AndrODet,
an online learning system to detect three common types of ob-
fuscation techniques in Android applications, known as identi-
fier renaming, string encryption, and control flow obfuscation.
All of these obfuscation techniques are detected based on some
static, quick-to-obtain features extracted from the Dalvik exe-
cutable bytecode of applications. AndrODet is modular, meaning
that there is a separate embedded module within the system to
detect each type of obfuscation, and each of these modules are
trained separately.

AndrODet has been implemented in python and tested on a
combination of malware and benign samples. The former set of
apps are collected from a recently released and carefully-labeled
malware dataset, called AMD [10], while the latter are obtained
by crawling the popular open-source repository of benign apps
known as F-Droid [11]. We have also compared our results with
state-of-the-art batch learning algorithms by leveraging Auto Tune
Models (ATM) [12], a system developed for hyper-parameter tun-
ing of batch learning algorithms and classification using a variety
of algorithms from this kind.

Experimental results show that online learning algorithms can
detect three popular types of obfuscation techniques in Android
applications with high accuracy. In addition, they can save
significant amount of time and memory as compared to batch
learning algorithms.

Contributions In short, the main contributions of this paper are as
follows:

• We propose AndrODet, a modular online learning mecha-
nism to detect identifier renaming, string encryption, and
control flow obfuscation in Android applications. To allow
future works benefit from this research, we make our tool
publicly available at:
https://github.com/OMirzaei/AndrODet

• As AndrODet is based on DSM techniques, there is no need
to re-train the system from scratch. Thus, we compare the
effectiveness of our systemwithmachine learning algorithms
working based on batch learning. To do this, we leverage
MOA [9] and add some extra features to this tool for hyper-
parameter tuning which will be used later for classification.
This enables us to have a fair comparison between the results
obtained from online learning algorithms usingMOA and the
ones which are obtained from batch learning methods using
ATM .

• AndrODet is able to dealwithmultidex Android applications.
Our system looks for all classes.dex files in different directo-
ries and extracts its features from all of them.

• We assess the efficiency of our tool with AMD [10] and Pra-
Guard [13]. Both datasets, with more than 24 k apps in total,
contain ground truth for appswhich are obfuscated by identi-
fier renaming and string encryption techniques. Moreover, to
create ground truth for control flow obfuscated apps which
was previously lacking, we have leveraged a well-known
obfuscator known as Allatori [14] and have obfuscated all the
samples of F-Droid [11], a free and open source Android ap-
plications repository. We aim at publicly releasing the latter
set of apps to foster further research in this direction.

Organization The remainder of this paper is as follows. Section 2
introduces some basic concepts as background. Section 3 describes
the proposed system. Evaluation results are presented in Section
4 followed by a discussion in Section 5. Section 6 surveys some
related works, and, finally, Section 7 concludes the paper and
presents future research directions.

2. Background

In this Section, we introduce the main concepts and techniques
related to our work, namely the Dalvik bytecode (Section 2.1),
common types of obfuscation inAndroid (Section 2.2), and relevant
details to data mining and machine learning (Section 2.3).

2.1. Dalvik bytecode

Android programs arewrittenmostly in Java, although they can
contain calls to binaries and other shared libraries known as native
components [15]. Oncewritten, they are compiled to Java bytecode
and, then, to Dalvik bytecode. The final result is a Dalvik EXecutable
(DEX) file with a .dex format or an optimized version of it with an
.odex format.

The Dalvik Virtual Machine (DVM) is a register-based machine
which executes Dalvik bytecode instructions (through a shared
library, called libdvm.so) and provides a Java-level abstraction for
the Java components of applications [16], while Java Native Inter-
face (JNI) supports the use of native components. DVM is based on
Just-in-Time (JIT) compilation and is replaced by Android RunTime
(ART) after Android version 4.4, which works based on Ahead-Of-
Time (AOT) compilation and has led to significant improvements
in performance and memory consumption [17].

Analyzing Dalvik bytecode is simpler than machine code, it
has a better readability for human analysts, and it provides better
semantic information. Also, it is easy to be reverse engineered
using tools like Dexdump [18], Dex2jar [19], Androguard [20], and
Apktool [21] to name a few. Thus, many static malware analysis

https://github.com/OMirzaei/AndrODet

242 O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261

tools [22], deobfuscators [4,23], and unpackers [24,25] have been
proposed which extract their features directly from Dalvik byte-
code. For instance, key program features such as method names,
class names, field names, variables, and strings are very quick to
obtain from the .dex file and give useful preliminary information.
Fig. 1 provides a Dalvik bytecode snapshot from a malicious app
which belongs to the FakeInstaller family. As it can be seen, con-
stant strings and some useful information about identifiers are
easily obtainable by parsing this bytecode.

2.2. Obfuscation in Android

Obfuscation is commonly used to protect software against re-
verse engineering, thus making the software harder to under-
stand [26]. There are multiple obfuscation techniques [27]. In this
work we focus on three well-known obfuscation techniques that
are commonly applied to Android applications, namely identifier
renaming, string encryption, and control flow obfuscation [27,28].

A common practice in programming is to choose meaningful
names for identifiers (i.e, variables, class and method names, etc.)
to increase the code readability. This will helps in identifying and
fixing bugs or adding extra features later, as understanding the
semantics of code with meaningful identifiers is much simpler.
However,malwarewriters try to choose eithermeaningless names
for their identifiers or else use obfuscators in order to garble the
key identifiers used in their source code. Obfuscators use a variety
of methods to rename key identifiers of an application either at
the source code level or directly in the .dex files. An obfuscated
identifier can be often told apart visually from a non-obfuscated
one because its name is meaningless. For example, a common
renaming strategy is to choose random short strings in lexico-
graphic order, e.g., ’a’, ‘b’, ‘aa’, ‘ab’, ‘ac’, etc., usuallywith lengths less
than 3 depending on the number of identifiers. A second strategy
is to leverage the overloading feature of Java through excessive
overloading and map irrelevant identifier names to the original
ones.

By doing so, reverse engineers need to put much more effort
into understanding the hidden semantics of code when critical
information such asmethod names are obscured. Based on a recent
study [4], the prevalence of identifier renaming is slightly less
in malware than in benign apps from third-party markets. Also,
malware authors tend to use more complex renaming policies,
such as using special characters (e.g., encoded in Unicode), which
creates challenges for systems which are developed to detect this
type of obfuscation.

Constant strings can also leak sensitive and private source code
information. Thus, they are encrypted in different ways to prevent
a convenient reverse analysis of applications. The most simplest
way to encrypt encryption is through an XOR operation. However,
standard cryptographic algorithms can be applied, including AES
or DES [29]. Also, secret keys can be defined (or either changed)
dynamically to apply more advanced types of string obfuscation,
which is almost impossible to be handled by static analysis tools.
Studies show that string encryption is more popular in malware
and nearly all benign apps do not make use of this type of obfusca-
tion.

Control flow obfuscation hinders static analysis by changing
the logical flow of the program through modifications in its Con-
trol Flow Graph (CFG). Typical techniques from this category try
to expand or flatten the CFG in order to increase the cost of
reverse engineering of applications. Common ways to do this
include injecting dead (or irrelevant) code, extending loop condi-
tions, adding redundant operations, parallelizing code, re-ordering
statements, loops, and inserting opaque predicates. The majority
of these approaches affect the some properties of he CFG, such as
the number of nodes and branches. Based on recent observations,

control flow obfuscation is not widely used, and it is only offered
by a few number of commercial obfuscators such as Allatori [14]
and DashO [30].

2.3. Data mining and machine learning

Although data mining and machine learning share some con-
cepts, they are different in a few major aspects. Generally, data
mining is defined as the process of discovering hidden patterns
from a big amount of data, or, in otherwords, getting some insights
about the data stored in databases [31]. The data can be stored elec-
tronically, and the search for patterns is commonly automated by
computer. On the other hand, machine learning is usually defined
as the process of learning from previous observations [32]. In most
cases, new information is learned after exploring meaningful pat-
terns from previous seen data obtained by trying various methods
of data mining. Data mining has been used in a variety of domains,
including many areas in cybersecurity [31], and, specifically, in
malware detection [33].

Traditional data mining algorithms need to have the whole set
of past observations (referred to as the training set) to discover
interesting patterns and will be used later by machine learning
algorithms to predict future observations. Thus, to explore new
patterns from a new set of observations, they need to be re-run.
However, with the emergence of new devices and technologies,
and the amount and frequency of data generated by them such
as smartphones and the Internet-of-Things (IoT), traditional data
mining algorithms cannot be applied efficiently as they need to be
repeated in short intervals that is not feasible at a low cost.

Continuous and fast streams of data introduce big challenges
to traditional data mining algorithms in particular, and machine
learningmethodsworking based on them in general. Some of these
challenges include but not limited to concept drift [34], feature
drift [35], temporal dependencies [36], and restricted resources
requirements, both in time andmemory. In addition, typical issues
known in traditional datamining andmachine learning algorithms,
including non-representativeness of training dataset, missed fea-
ture values, underfitting, overfitting, and irrelevant features may
be found here. Thus, several attempts have been made in recent
years to introduce new methods for handling data streams.

DSM is a variation of traditional mining techniques which tries
to explore patterns from continuously and rapidly evolving data.
The two approaches are similar in terms of predicting a label for
new upcoming instances represented by a number of features
known as feature vector. However, DSMmethods build their mod-
els from an incrementally growing pool of training instances in
contrast with a large static training dataset which is commonly
used by traditional data mining algorithms [37]. Therefore, all
machine learning methods which are based on traditional data
mining are known as batch learning algorithms, and the ones
which make use of data stream mining are referred to as on-
line learning algorithms. Due to the extensive application areas
of DSM, several tools have been developed, including Massive
Online Analysis (MOA) [38], Scalable Advanced Massive Online
Analysis (SAMOA) [39], AdvancedDataMining andMachine Learn-
ing System (ADAMS) [40], JUBATUS [41], Vowpal Wabbit [42],
StreamDM [43].

Online learning algorithms update their models over time (in-
cremental learning) based on new coming instances compared to
batch learning methods that keep their built model static once it is
extracted. Therefore, online learning can save a significant amount
of computational resources, and, also, the time which is taken for
extracting the models. Furthermore, online learning algorithms
do not require to decide on the number of instances to be used
for training which is critical in the performance of batch learning
algorithms. In return, they split the stream into disjoint chunks of

O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261 243

Fig. 1. A snapshot of Dalvik bytecode for an app from the FakeInstaller family.

data known as landmark windows. A landmark can be defined as
the number of observed instances up to the moment. Thus, once a
new landmark is reached all past instances are discarded. Another
strategy is to discard one instance at a timewhich is done by sliding
windows.

3. Approach

This section presents our approach to detect three types of ob-
fuscation techniques in Android applications. A general overview
of the system is proposed in Section 3.1. Then, primary goals
are clearly defined in Section 3.2. In Section 3.3, we describe all
the details related to the datasets which are used in this work.
The set of all features considered for our detectors and possible
feature selection algorithms are discussed in Section 3.4. Finally,
classification algorithms chosen for our online learning system and
their hyper parameter tuning are presented in Section 3.5.

3.1. Overview

AndrODet is an online learning system which is developed to
detect three main types of obfuscation in Android applications,
namely identifier renaming, string encryption, and control flow
obfuscation. Also, it can detect obfuscation in Multidex Android
applications. Android RunTime (ART) which is used in Android 5.0
(API level 21) and higher supports loading multiple Dalvik EXe-
cutable (DEX) files fromAPK files. It then performs pre-compilation
at install time and scans for all classes.dex files to compile them
into a single .oat file. This feature enables applications to distribute
their code into several .dex files. Specific Androidmalware variants
have also been observed which load their malicious .dex file from
a secondary directory (e.g. assets directory) [44,45]. AndrODet
searches for all classes.dex files in different directories and extracts
its features from all of them.

The proposed system is modular, i.e., there is an embedded
module (binary classifier) to detect each type of obfuscation as
shown in Fig. 2(a). Using a modular architecture has three main
advantages. First, it reduces feature overlap, and, thus, improves
the precision accuracy. Second, the system can be easily updated
with a new set of features for each module based on variations in
obfuscation techniques. Third, different learning algorithms can be
used for each module based on the nature of the input data.

To label new unseen apps, all required features are extracted
by each module and a feature vector is created at the first step, as
depicted in Fig. 2(b). A binary classifier is then chosen to decide
whether or not the app is obfuscated. These classifiers are trained
incrementally using online learning algorithmswhile labeling new
applications.

3.2. Goals

AndrODet is intended to achieve the following main goals:

• Rapidity. The system must be able to work in a reduced
amount of time.

• Readiness. The systemmust be ready to work withmoderate
training requirements.

• Accuracy. The system must accurately identify the type of
obfuscation that has been applied.

• Scalability. The system must be able to cope with a large
number of applications using a moderate amount of re-
sources.

3.3. Dataset description

Our dataset is formed by bothmalware and benign applications,
and contains ground truth for all of the obfuscation techniques
considered in this work. We have built up the ground truth for
identifier renaming and string encryption obfuscation techniques
by leveraging the AMD dataset [10], a recently released Android
malware dataset with apps from 71 families ranging from 2010
to 2016 (Table 1). This dataset is formed by 24,553 applications
that are labeled based on a number of behavioral criteria, including
the presence of different anti-analysis techniques (e.g., identifier
renaming or string encryption) in the apps of each family of one
particular variety. To have a fair and balanced ratio of obfuscated
and non-obfuscated samples, we have selected the same number
of apps for each type, some of which were obfuscated using more
than one technique.

In order to create a dataset of Android apps for control flow
obfuscation technique, 1,380 applications were downloaded from
the F-Droid market [11]. Both the compiled app package (APK file)
and their Java source code are available in the market. Therefore,
they are used as the ground truth for non-obfuscated apps. Also,
to gather the same number of control flow obfuscated apps, we
apply Allatori [14] over 1380 apps selected randomly from AMD
dataset. These apps are control flow obfuscated to the maximum
level.1 According to Allatori documentation, this level of obfusca-
tion makes the apps bigger in size and a little bit slower as it uses
all types of control flow obfuscation techniques. We finally choose
80% of this repository (2208 apps) to assess the accuracy of control
flow obfuscation detection module, and we leave the remaining
20% (552 apps) to test its efficiency over unseen applications. The
ratio of obfuscated and non-obfuscated samples is again equal in
both portions.

Finally, we have used an additional released dataset, known
as PraGuard [13] to evaluate the performances of our identifier
renaming and string encryption detector modules over unseen ap-
plications. This dataset is composed of 10,479 samples, obtained by
obfuscating the MalGenome [46] and the Contagio Minidump [47]
datasets with seven different obfuscation techniques. It is worth
mentioning that during our feature extraction process, we found

1 http://www.allatori.com/doc.html

http://www.allatori.com/doc.html

244 O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261

Fig. 2. AndrODet architecture.

Table 1
Number of apps per obfuscation technique.
Dataset Identifier Renaming String Encryption Control Flow Obf. Global

Obf Non-obf Obf Non-obf Obf Non-obf Obf Non-obf

F-Droid 0 0 0 0 0 1380 0 1380
AMD 5992 5992 7119 7119 1380 0 14,491 13,111
PraGuard 1495 1495 1495 1495 0 0 2990 2990
Total 7999 7999 8614 8614 1380 1380 17,481 17,481

that some apps cannot be disassembled properly with dexdump,
and, thus, we have discarded them from our datasets.

3.4. Feature extraction and feature selection

The first important decision to make in learning-based systems
is to choose the set of features that will be used to label (or predict)
new unseen instances. Once they are defined, analysts may decide
to apply feature selection algorithms to discard those features that
are not relevant despite the initial assumption, or those with a low
variance among all instances. In our case, we aim to identify a set
of features that, apart from being useful for the prediction task,
can be rapidly extracted from the applications. Thus, we simply
parse the Dalvik bytecode (recall Section 2.1) of each app using
dexdump [18] to find the majority of features. Table 2 shows the
set of all features considered. In addition, the distributions of all
features extracted from all apps in our dataset are included in the
Appendix A for further analysis. Inwhat follows, we describe them
per module in more detail.

Table 2
Set of all features considered for each detector module.
Identifier Renaming String Encryption Control Flow Obfuscation

Avg_Wordsize_Flds Avg_Entropy Num_Nodes
Avg_Distances_Flds Avg_Wordsize Num_Sinks
Num_Flds_L1 Avg_Length Num_Edges
Num_Flds_L2 Avg_Num_Equals Num_Goto/LOC
Num_Flds_L3 Avg_Num_Dashes Num_NOP/LOC
Avg_Wordsize_Mtds Avg_Num_Slashes LOC
Avg_Distances_Mtds Avg_Num_Pluses File_Size
Num_Mtds_L1 Avg_Sum_RepChars
Num_Mtds_L2
Num_Mtds_L3
Avg_Wordsize_Cls
Avg_Distances_Cls
Num_Cls_L1
Num_Cls_L2
Num_Cls_L3

3.4.1. Features for identifier renaming detection
To detect identifier renaming, we extract 5 different features

from the key identifiers of Dalvik bytecode, including fields, meth-
ods, and classes. The set of features considered here are the average

O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261 245

Table 3
Examples of identifiers extracted from an obfuscated malware sample in the Obad
family.
App MD5 = f7be25e4f19a3a82d2e206de8ac979c8

List of fields List of methods List of classes

cOIcOOo ocCCIlI ololCCOc
IOocoOI onOpen AdminReceiver
IoOoOIOI onUpgrade cOoOICO
oclClII OoCOocll IOocoOI
OoCOocll OOIlIcCc OlCCcIl
OocIOCIo onCreate OcIcoOlc
OlICCCco cClccOlc OoCOocll
CICCCcCI CcOCoIcO OOIlIcCc
occcclc oIOocIlo OocIOCIo
oOCCOOI CoOOoOo CIOIIolc
oCOllOO oIlclcIc CICCCcCI
CIOIIolc ICclCcoC olcCIIC

wordsize (in bytes), the average distance of consecutive extracted
identifiers, and the number of identifiers with length 1, 2 and 3. To
compute the distance between two identifiers, we first represent
each string as a vector of natural numbers, where each compo-
nent is given by the corresponding byte in the string. If they are
not of the same length, the shorter identifier is right-padded by
blank spaces. After this, the d1 distance between both vectors is
computed:

d1(A, B) =

n∑
i=1

|ai − bi|, (1)

where A = (a1, . . . , an) and B = (b1, . . . , bn) are the byte-level
representations of both strings. Since we operate at the byte level,
we refer to this as the ASCII distance of the two identifiers.

The rationale for the ASCII distance is the following. When
using renaming, identifiers are normally replaced by repetitive
or random sequences of characters in the English alphabet in
Android benign apps, and special characters (encoded in Unicode)
in malware samples [4]. Thus, consecutive extracted identifiers in
ID-renamed malware samples usually have a small ASCII distance
compared to the ones in benign apps, as shown in Tables 3 and
4. Moreover, based on our observations (Fig. 3), the number of
identifiers with lengths lower than 3 were much more frequent in
obfuscated samples than in benign apps,which provides additional
support to our logic to choose this set of features for identifier
renaming detection.

3.4.2. Features for string encryption detection
For string encryption detection we considered 29 different fea-

tures at the beginning, all of which were obtained from the app
bytecode. The set of initial features we considered included: the
average entropy, the average wordsize, the average length, the
average number of equals (‘=’), the average number of dashes (‘−’),
the average number of slashes (‘/’), the average number of pluses
(‘+’), the average sum of repetitive characters which are appear
more than once in a string, and the frequency of 21 different special
characters, including underlines and spaces. However,wewere left
with only 8 features after applying feature engineering techniques,
namely the average entropy, the average wordsize, the average
length of strings, the average number of equals, dashes, slashes,
and pluses, and, finally, the average sum of repetitive characters.
Thiswas doneusing a tree-based feature selection algorithmwhich
scores features based on their importance and discards irrelevant
ones [48].

We chose this set of features by visually analyzing a number
of strings from both obfuscated and non-obfuscated samples. Crit-
ical constant strings in Android malware are normally encrypted
by either AES or DES encryption algorithms [49]. Also, they are

Table 4
Examples of identifiers extracted from a non-obfuscated malware sample in the
Univert family.
App MD5 = dadba61b42e3129dcbb2c37ba7177290

List of fields List of methods List of classes

mBigLargeIcon getItemId KeyEventCompatEclair
mParentFragment isSingleShare ViewPager
mSetIndicatorInfo performPause ContextCompat
EDGE_ALL makeMainSelectorActivity NotificationCompat
mPendingBroadcasts setDrawerShadow ParcelableCompat
TRANSIT_NONE getCallingPackage ScrollerCompat
mHandler getConstantState TransportPerformer
mTaskInvoked setUserVisibleHint PagerTitleStrip
mNumOp setMenuVisibility TimeUtils
PRIORITY_DEFAULT setOverScrollMode BackStackRecord
ACTIVITY_CREATED dismissAllowingStateLoss FileProvider
children dataToString SupportMenu

Table 5
A snapshot of constant strings extracted from obfuscated malware in the Kyview
and Triada families.
App MD5: 9f973194e1d2db2c8d37571b1b8afa49, Family: Kyview

AES
AES/CBC/PKCS5Padding
ARuhFl7nBw/97YxsDjOCIqF0d9D2SpkzcWN42U/KR6Q=
KXbn1K9Cz2ZgeOTJa+Veo9TtqgqFQ49etShsU9z+UAP37syBIxS/qy9gK8yB2kKw
cbSAmn5ZqTUlLC/bgOZkEzXGEOY21uWifgdKJs9yk7A=
XONjIhr7f5+v7VYE2sRnrybwgpe9YIOqpcEHDUiel7EzNqAyI0RSFuWdEz2ratN+
LbZjxcpsz6RheqLbO48YwKTUVh9wQrFoY7gJK2jAZFI=
/XHxH5XHwv8SxKlJV4XyYOIB7MuqmSwqMacPj1bbgbS8IA8tETEArriXswHCehFP
Jil+B/2MHKx+6dpy/2xm493DojzmiB3wB5+eGz7hPDU=

App MD5: a19f784807c3249837135de9b1a43fdf, Family: Triada

Sw4QQ1hFGFJJF1UWDwN1dnYKVQQGJAJDWwMUYkZVEUYHQg==
Wg4WQ2hRRkNySV8BOUNVX1U=
UQ4IGU5EGEZYF1UWDwN1dnYKVQQGJAJDWwMUYkZVEUYHQg==
VxkRaFZCUWxdS1sWOUtdXlU8QwAPAw==

commonly encoded using Base64 scheme. These block cipher algo-
rithms, depending on themodewhich is adopted, require the input
string to be an exact multiple of the block size. If the string to be
encrypted is not an exact multiple, it is padded before encrypting
by adding a padding string (or a pad byte). In our studies, we
observed many strings in obfuscated samples which were padded
by using ‘=’ or ‘==’ strings (Table 5). Furthermore, equal signs,
dashes, slashes, and plus signs are observed mostly in obfuscated
strings than in non-obfuscated ones.

3.4.3. Features for control flow obfuscation detection
Finally, to detect control flow obfuscation, features are ex-

tracted from both Dalvik bytecode and the CFG of applications.
Seven different features are extracted here: the number of nodes;
the number of sinks (i.e. nodes with an outdegree = 0); the number
of edges from the CFG of each application; the number of goto
instructions per line of code; the number of NOP instructions per
line of code; and the total number of lines of code from the app’s
bytecode. Additionally, the app’s file size is considered because
some advanced types of Android malware pack their native code
in the resource or assets directories and decrypt them at runtime
using a decryption stub [25,50]. So, this feature compensates for
the limitations of dexdump in accurately measuring the lines of
code from sophisticated Android malware specimens.

Although features for control flow obfuscation detection are
extracted from both bytecode and the CFG of apps, we had the
intuition that some code features may overlap with others ex-
tracted from CFG. For instance, goto instructions simply add more
branches to the CFG, and, thus, increase the in-degree or out-
degree of some nodes. However, extracting features from both

246 O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261

Fig. 3. Distribution of methods with length 1 in obfuscated (a) and non-obfuscated (b) apps.

bytecode and the CFG guarantees that no features will be missed
due to the limitations that may exist in Android reverse engineer-
ing tools.

3.5. Classification algorithms and hyper-parameter tuning

The second critical decision in learning-based systems is to
choose an appropriate classifier to label unseen samples. Addi-
tionally, most of these classifiers have various parameters which
have significant impacts on their performance. They are commonly
knownas classifiers’ hyper-parameterswhich need to be setwisely
based on the application context. One simple example is the num-
ber of neighbors (k) in the famous k-Nearest Neighbor (or kNN)
learning algorithm [51].

Three strategies are usually adopted to tune classifiers’ hyper-
parameters [52]. In the first approach, all combinations of hyper-
parameter values are tried in a greedyway to find the best possible
set of combinations. In the second approach, all combinations are
explored again but in a random fashion. The advantage of this
method is that it may find the optimal solution faster than a greedy
search. The third strategy is to use a random search but with a
limited number of trials, whichwillmake the algorithmeven faster
but does not guarantee finding the optimal set of combinations.

In AndrODet, all classifiers update their models while observ-
ing new applications based on online learning algorithms. To do
this, we have used a wide variety of algorithms provided by MOA,
including Hoeffding Tree [53], Weighted Majority Algorithm [54],
Leveraging Bag [55], LearnNSE [56], Stochastic Gradient Descent
(SGD) [32], and Naive Bayes [57]. Moreover, we have extended
this tool to enable us choosing the best possible hyper-parameters
for the classifiers by developing a hyper-parameter tuning proce-
dure. From the three discussed strategies, we have chosen limited
random search, which gave us a satisfactory classification perfor-
mance in a reasonable period of time.

4. Evaluation

This section presents the evaluation results. We first present
the experimental settings. Then we evaluate the performance of
each AndrODet’s detection module separately (Sections 4.2–4.4).
Finally, we consider cases in which apps may be obfuscated with
more than one technique (Section 4.5).

Additionally, we test the accuracy of our system on unseen
apps (as discussed in Section 3.3) and compare the results with
a similar system based on batch learning algorithms. We adopt
the same strategy here, i.e., we initially test the performance of
each module on unseen apps (Section 4.6.1, 4.6.2 and 4.6.3), and,
then, we present the accuracy of system when apps may use a
combination of obfuscation techniques (Section 4.6.4). We finally
compare the performances of both systems in terms of time and
memory usage in Section 4.7.

4.1. Experimental settings

Experiments were carried out on an Ubuntu server with 15 pro-
cessors and 24 GB of RAM. We use Massive Online Analysis (MOA)
in its version as of February 2018 [38] to analyze the accuracy of
AndrODet. Also, to compare its efficiency with a similar system
based on batch learning algorithms, we leverage the Auto-Tuned
Models (ATM) tool [12], a recently proposed tool for machine
learning and hyper-parameter tuning. We have selected various
learning algorithms from this tool, namely kNN, Support Vector
Machines (SVMs) [58], decision trees [59], and random forests [60].

For online learning algorithms, we have used leveraging bag,
and, from batch learning ones, we have finally selected SVM after
observing the performances of classifiers. Moreover, to have a
fair comparison, we first tune the hyper-parameters of classifiers
(Fig. 4) in both MOA and ATM following a limited random search
strategy with 200 trials (known as budget in ATM). This helps us
to obtain fairly well combination of parameters for each learning
algorithm.

4.2. Identifier renaming detection

We use the full AMD dataset in order to inspect how the ac-
curacy of identifier renaming module evolves over time using the
EvaluatePrequential class ofMOA [61]. This class evaluates a classi-
fier on a stream by testing, and, then, training with each sample in
the sequence. Experimental results show that AndrODet identifier
renaming detectionmodule is able to predictwhether an app is ob-
fuscated or not with a high accuracy immediately after observing
few samples. As it is shown in Fig. 5(a), the accuracy reaches around
71% after observing only 25 samples. Also, it improves step by step
by observingmore samples from the dataset. Ourmodule to detect

O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261 247

Fig. 4. Data preparation (left) and the overall architecture of classification process (right), including parameter tuning, model training and testing. White squares: non-
obfuscated apps; dark blue squares: apps with string encryption obfuscation; dashed blue squares: apps with ID renaming obfuscation. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

identifier renaming obfuscation could achieve an average accuracy
of 92.02% over the whole AMD dataset.

The number of samples correctly classified (TP) as obfuscated
is 5758, and 631 samples were incorrectly classified (FP) as obfus-
cated (Table 6). One reason is that some obfuscators use a different
strategy to rename key identifiers of malware samples such as us-
ing non-ASCII characters. The second reason is that non-obfuscated
malware specimens do contain obfuscated identifiers aswell in the
majority of cases mainly because they import some classes from
Android or Google libraries which are already obfuscated.

4.3. String encryption detection

As malware samples use a wide range of cryptographic func-
tions, classifying apps as either obfuscated or non-obfuscated is not
straightforward even if a fine set of features is considered. Also,
advanced malware pack the original .dex file of applications and
decrypt them at run-time by using a wrapper; therefore, they put
a big challenge ahead of systems which rely heavily on features
extracted before runtime.

Similar to identifier renaming detection, we use the full AMD
dataset to evaluate the accuracy of our string encryption detection
module when new apps are fed into the system over time. Our
module for string encryption detection could achieve an average
accuracy of 81.41% as shown in Fig. 5(b). It improves soon after
observing a few samples and increases up to 87.4% at maximum.

In total, 5499 samples were correctly classified (TP) as obfus-
cated, and 906 apps were mistakenly classified (FP) as obfuscated.
In our studies, we found that malware samples make use of a
wide range of cryptographic functions and encryption strategies
which makes it challenging to consider a proper set of features in
order to detect this particular type of obfuscation. A very simple
way to do this is to simply extract some features from encrypted
strings. Another advanced way is to extract features from encryp-
tion/decryption functions which are not always easily extractable
as they are sometimes hidden in resource directory and are dynam-
ically exercised at run-time.

4.4. Control flow obfuscation detection

Due to the limited number of samples we had for this type of
obfuscation, we assess the average accuracy of our control flow
obfuscation detection module over time only based on 80% of
the applications collected here, and we keep the 20% remaining
apps to test our system over unseen apps (recall Section 3.3) in
the next sections (Sections 4.6.3 and 4.6.4). Experimental results
show that the corresponding AndrODet module for control flow
obfuscation detection is able to identify obfuscated apps with an

average accuracy of 68.32% and a maximum accuracy of 73.4% on
the final samples (Fig. 5(c)). This seems to be reasonable due to the
limited number of samples we could feed into this module. Also,
maximum accuracy percentage shows that this module would
probably be able to have a better performance if it is fed withmore
training samples with a proper distribution of features.

Control flowobfuscation detectionmodule could correctly label
898 samples as obfuscated (TP). Also, 429 samples were wrongly
classified as obfuscated (FP). The main important reason for these
relatively smaller values comparing with the ones achieved for
identifier renaming and string encryption detection modules is
the small amount of apps we had as ground truth for this type of
obfuscation.

Generally speaking, accuracy plots for each of the obfusca-
tion detection modules demonstrate the improvement of online
learning algorithms over time when they observe more and more
samples considering the fact that they do not need to be re-trained.

4.5. Performance evaluation for combined techniques

To measure the performance of our system when apps are ob-
fuscated using a combination of techniques, we extend the binary
classification problem of each module to a multi-label classifica-
tion problem and calculate the global accuracy using the same
strategy we adopted for individual modules. Here, each detector
module is tested and trained separately using the EvaluatePrequen-
tial class.

To achieve our goal and to be able to create a multi-label
confusion matrix, we consider the presented encoding in Fig. 6.
Thus, total number of combinations is 8 each of which is a binary
representation of techniques used to obfuscate an application. For
instance, 6 (’110’) is a label which shows that an app is obfuscated
using both identifier renaming and string encryption techniques,
and 0 (’000’) demonstrates that the app is not obfuscated with any
of these three techniques. However, we have excluded those labels
for which we did not have any ground truth in our datasets.

As it is clear from the confusion matrix (Table 7), the per-
formance of each module obtained by dividing the true positive
by false negative for that obfuscation technique is close to the
values we separately evaluate on the previous sections. Also, the
global accuracy of AndrODet is approximately 80.66% considering
the fact that some apps could be obfuscated with more than one
technique. The prediction accuracy for apps which are obfuscated
by identifier renaming and string encryption at the same time
is 76.68% which stems in the fact that we had limited samples
obfuscated with both techniques as ground truth.

248 O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261

Fig. 5. Evolution of detector modules’ accuracies over time.

4.6. Comparison against batch learning algorithms

This section compares the accuracy of our system to detect
each type of obfuscation with a similar system based on batch
learning algorithms over unseen applications. To do so, we make

use of a new dataset, known as PraGuard (recall Section 3.3). Also,
we present and discuss the performance of both systems when
a combination of techniques are used to obfuscate Android apps.
Table 8 summarizes the results.

O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261 249

Table 6
Performance metrics for each detection module.
Detector TPR (Recall) FPR (Inverse Recall) Precision F1 Score

Identifier Renaming 0.91 0.02 0.95 0.92
String Encryption 0.80 0.08 0.78 0.79
Control Flow Obfuscation 0.66 0.1 0.7 0.67

Table 7
Confusion matrix for multi-label classification with MOA (real classes on rows and
predicted classes on columns).

N CF SE IR IR+SE

N 10,313 0 715 368 719
CF 210 758 0 0 142
SE 392 0 5784 242 701
IR 103 0 99 5513 277
IR+SE 309 0 300 213 1224

N: No Obfuscation, CF: Control Flow Obfuscation. SE: String Encryption, IR: Identi-
fier Renaming.

Table 8
Comparison of the accuracy between two systems for Android obfuscation detec-
tion based on online and batch learning algorithms (maximum accuracies).
Identifier Renaming String Encryption Control Flow Obfuscation

MOA ATM MOA ATM MOA ATM

95.1% 91.5% 85.6% 81.2% 73.7% 87.9%

4.6.1. Identifier renaming detection
To compare the performance of AndrODet’s identifier renam-

ing detection module with a similar system based on batch learn-
ing algorithms, we do the following experiment. We first feed our
online learningmodulewith a combined dataset of apps fromAMD
and PraGuard to measure its average accuracy using MOA. Then,
we train another module based on batch learning algorithms with
AMD to test it later over the PraGuard dataset using ATM tool.

Our results show that the online learning module improves its
accuracy to 95.1% by observing further samples from PraGuard
dataset. One the other hand, the module based on batch learning
could achieve an accuracy of 91.5% (Table 8). The results obtained
here highlights the adaptability power of online learning systems
versus batch learning ones when new samples appear over time.

4.6.2. String encryption detection
We adopt a Similar strategy to compare the performance of our

online learning based module with another module which makes
use of batch learning for string encryption detection on unseen
applications, i.e., we observe how the accuracy of our learning
module evolves over time when the new dataset (PraGuard) is fed
into the system. We then train the batch learning based module
with the AMDdataset and test it over PraGuard dataset to compare
their accuracies.

Results confirm that the online module is able to update its
model incrementally by observing new samples, and, thus, could
reach an accuracy of 85.6% compared to the batch learningmodule
with a lower accuracy. Although the difference is not big, this
result bolds the advantage of online learning algorithms over batch
learning ones in improving their built model without the need of
time consuming training procedure.

4.6.3. Control flow obfuscation detection
Due to the limited available ground truth for control flow ob-

fuscated apps, 80% (2220 apps) of the apps (1387 obfuscated apps
from AMD and 1387 non-obfuscated apps from F-Droid) is used
to evaluate our online learning module (as performed in Section
4.4), and 20% (554 apps) is used to inspect how our system’s
accuracy evolves when new apps appear, and, also, to compare

Table 9
Confusion matrix for multi-label classification with MOA on unseen applications
(real classes on rows and predicted classes on columns).

N CF SE IR IR+SE

N 11,913 0 715 374 887
CF 145 1018 0 0 224
SE 459 0 7196 368 591
IR 97 0 166 7049 175
IR+SE 229 0 216 267 2829

N: No Obfuscation, IR: Identifier Renaming, SE: String Encryption, CF: Control Flow
Obfuscation.

Table 10
Confusion matrix for multi-label classification with ATM on unseen applications
(real classes on rows and predicted classes on columns).

N CF SE IR IR+SE

N 12,021 0 709 369 790
CF 45 1216 0 0 126
SE 459 0 7146 368 641
IR 92 0 149 6877 369
IR+SE 254 0 216 267 2804

N: No Obfuscation, IR: Identifier Renaming, SE: String Encryption, CF: Control Flow
Obfuscation.

its performance with a similar module based on batch learning
algorithms.

The accuracies obtained from both systems show that the batch
learning based module can predict the label of unseen apps with
a higher accuracy. However, there is a major difference between
our test samples used for this module with the other two modules
(Sections 4.6.1 and 4.6.2). The difference is that unseen apps are
fed into the system from the same datasets (AMD and F-Droid)
which were used for evaluating our online module, and, thus, are
expected to have similar features. In other words, unseen apps do
not add much information to the previously built model of our
module.

4.6.4. Combined obfuscation techniques
In a final assessment, we repeat the same experiment as we

did in Section 4.5, but on unseen applications. Thus, we use the
PraGuard dataset as ground truth for identifier renaming and string
encryption techniques, and the remaining 20% of apps from AMD
and F-Droid as ground truth for control flow obfuscation. We
compare our results with another system based on batch learning
algorithms. For AndrODet, we inspect how our system can extend
its built model when new apps are fed into the system and when
they might use a variety of obfuscation techniques.

As it is clear from the confusion matrices of the two detection
systems (Tables 9 and 10), the global accuracy of AndrODetwhen
it is fed with more unseen applications and is tested at the same
time is around 83.34%which shows aminor improvement compar-
ingwith the one obtained in Section 4.5. On the contrary, the global
accuracy of a similar system based on batch learning algorithms
is around 85.64%. Also, accuracies of detector modules which can
be obtained from these matrices are aligned with the results we
achieved before (Table 8).

In particular, the individual accuracy of the control flow ob-
fuscation detection module on unseen applications using batch
learning algorithms is slightly higher than the accuracy of the same

250 O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261

Fig. 6. Multi-label encoding of obfuscation techniques.

module based on online learning algorithms. This is vice versa for
the other two obfuscation techniques, namely identifier renaming
and string encryption, i.e. the accuracies of detectormoduleswhich
make use of online learning algorithms are higher than the same
modules which are based on batch learning algorithms. Also, the
system which works based on batch learning algorithms outper-
forms AndrODet when it comes to apps that are obfuscated by
both identifier renaming and string encryption techniques.

4.7. Performance comparison: time and memory

One key advantage of using online learning algorithms in clas-
sification is their ability to update their model upon observing new
samples opposite to batch learning algorithmswhich do need to be
re-trained after specific intervals in order to preserve their accura-
cies over time. Re-training process needs a considerable amount
of memory as well. Thus, to compare AndrODet with a similar
system based on batch learning algorithms (the systems discussed
in Section 4.6.4) in terms of time and memory we conduct the
following experiment.

For time analysis, we assume that the batch learning system
needs to be re-trained after classifying every 1000 samples (1000
epochs). With this assumption, we start classifying the whole
applications (recall Table 1); but, here, the system is re-trained
after classifying every 1000 samples. Thus, the time for each epoch
is calculated by summing up the timewhich is needed to train, and,
then, test the system over next 1000 samples. And, the final cumu-
lative time is the sumof time spent in all epochs until it classifies all
applications. For AndrODet, each epoch’s time is obtained by only
measuring the time which is used for classification. We analyze
memory usage based on the same assumption as shown Fig. 7.
Here, we exclude the amount of time and memory which is used
for hyper-parameter tuning in both systems.However,we consider
the time which is needed to train both systems at the beginning.

As it is clear, AndrODet outperforms a similar system based on
batch learning algorithms in both time and memory consumption
on amedium size dataset. If the dataset size increases time by time,
and if the built model is needed to be updated in shorter intervals,
this difference will most probably be higher between online learn-
ing systems and batch learning ones. Another important aspect is
to inspect the amount ofmemorywhich is consumed as the dataset
grows in size over time. Based on our observations, AndrODet
consumed 33.79 MB at maximum as the dataset increased to
around 34 K apps. In contrary, the system based on batch learning
algorithms consumed 71.89 MB of RAM memory as more samples
were added to the training set over time.

5. Threats to validity

This section discusses a number of potential limitations we
encountered in our work. Our datasets contain two main issues
that could impact the validity of our results. On the one hand,
they do not contain an uniform distribution for all combinations of
obfuscation techniques. For example, there is not a sample in our
datasets in which string encryption and control flow obfuscation
have been jointly applied. To the best of our knowledge, there is

Fig. 7. Comparison of time and memory consumption between online learning
algorithms using MOA (a) and batch learning algorithms using ATM (b) for Android
obfuscation detection.

no dataset that contains such a type of application. Therefore, the
analysis on the effectiveness of this approach for these types is
left for future work. On the other hand, our datasets contain apps
which are control flow obfuscated using a single tool (i.e., Allatori).
As a consequence, apps which are obfuscated with other tools may
evade detection by AndrODet if the techniques they employ are
quite different.

State-of-the-art Android reverse engineering tools are shown
not to work properly in all cases. Thus, systems that make use of
features extracted by these tools are prone to errors. For instance,
disassemblers may make mistakes which could in turn hide infor-
mation to the systems that use the result of disassembly. Also, tools
which extract control flow graphs are not perfect, specially when
apps adopt advanced anti-analysis techniques.

Advanced code obfuscation techniques in Android may use a
combination of transformations [62]. Although AndrODet is mod-
ular and can detect if a malware is obfuscated usingmore than one
technique, it does not consider all possible combinations which
might exist in the wild. However, there is not a comprehensive
and systematic study to report the prevalence of adopting various
combinations of Android obfuscation techniques at the moment.
Moreover, advanced malware specimens use a wide range of tech-
niques to evade malware analysis systems which can affect our
system.

O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261 251

Fig. A.8. Distribution of the average wordsize of methods in (a) obfuscated and (b) non-obfuscated apps.

Fig. A.9. Distribution of the average ASCII distances between consecutive extracted methods in (a) obfuscated and (b) non-obfuscated apps.

Fig. A.10. Distribution of methods with length 1 in (a) obfuscated and (b) non-obfuscated apps.

6. Related work

Many prior works have attempted to address the problem
of handling obfuscation in Android. On the one hand, the goal
of several works is to carry out a process without any impact

despite of obfuscation. Particularly, a matter of interest is malware
analysis. In this regard, [63] propose RevealDroid, a system for
malware detection and family identification in an obfuscation-
resilient manner. On the other hand, Zhang et al. aim to detect

252 O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261

Fig. A.11. Distribution of methods with length 2 in (a) obfuscated and (b) non-obfuscated apps.

Fig. A.12. Distribution of methods with length 3 in (a) obfuscated and (b) non-obfuscated apps.

Fig. A.13. Distribution of the average wordsize of classes in (a) obfuscated and (b) non-obfuscated apps.

repackaged applications by inspecting the user interactions in
the graphical interface [64]. The same problem is addressed by
CodeMatch, which is able to deal with other types of obfuscation
such as code slicing [65].

The works described so far consider obfuscation as an obstacle
to be saved to achieve a goal of a different nature. In this work,
the detection of obfuscation is indeed the target of the approach.
In this regard, two actions have been considered in other works,

O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261 253

Fig. A.14. Distribution of the average ASCII distances between consecutive extracted classes in (a) obfuscated and (b) non-obfuscated apps.

Fig. A.15. Distribution of classes with length 1 in (a) obfuscated and (b) non-obfuscated apps.

Fig. A.16. Distribution of classes with length 2 in (a) obfuscated and (b) non-obfuscated apps.

either detecting obfuscation or even attempting to deobfuscate the
app. Each one is described in the following.

With respect to obfuscation detection, in 2018 Dong et al.
have carried out a large-scale investigation. They focus on four

types of obfuscation, namely identifier renaming, string encryp-
tion, Java reflection and packing. For each of them, they propose a
lightweight detector that leverages signatures and machine learn-
ing techniques. Their approach is assessed using a dataset formed

254 O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261

Fig. A.17. Distribution of classes with length 3 in (a) obfuscated and (b) non-obfuscated apps.

Fig. B.18. Distribution of the average entropy of strings in (a) obfuscated and (b) non-obfuscated apps.

Fig. B.19. Distribution of the average wordsize of strings in (a) obfuscated and (b) non-obfuscated apps.

by 114,560 apps from both goodware and malware. To detect
identifier renaming and string encryption, they use Support Vector
Machine (SVM) as technique and 3-grams as features. To date,
their work is the most similar to ours. In a similar vein, Wang
and Rountev attempted to detect the tool that has been applied.

For this purpose, they take 282 apps from F-Droid and obfuscate
them using different tools using several configurations. These con-
figurations indicate the type of obfuscation applied. Interestingly,
these configurations involve identifier renaming, string encryp-
tion, package modification and control flow obfuscation. Using

O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261 255

Fig. B.20. Distribution of the average length of strings in (a) obfuscated and (b) non-obfuscated apps.

Fig. B.21. Distribution of the average number of ’=’ characters in (a) obfuscated and (b) non-obfuscated apps.

Fig. B.22. Distribution of the average number of ’-’ characters in (a) obfuscated and (b) non-obfuscated apps.

10 sets of strings (e.g. method names, package names, etc.), their
approach also relies upon SVMs [8]. In their approach, they reach
97.5% of accuracy for obfuscator detector, and similar rates when it
comes to detect which configuration has been applied in each tool.

As compared to this work, their dataset is significantly smaller.
Moreover, they do not deal with the re-training aspect.

Concerning deobfuscation attempts, [66] presents early results
on deobfuscation against ProGuard tool. Their approach is based

256 O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261

Fig. B.23. Distribution of the average number of ’/’ characters in (a) obfuscated and (b) non-obfuscated apps.

Fig. B.24. Distribution of the average number of ’+’ characters in (a) obfuscated and (b) non-obfuscated apps.

Fig. B.25. Distribution of the average sum of repetitive characters in (a) obfuscated and (b) non-obfuscated apps.

on comparing the similarity of some portions of the code against
a database filled up with unobfuscated code. On the other hand,
Yoo et al. propose a string deobfuscation technique to improve
malware detection ratios [67]. This technique is based on running

the app, intercepting all results coming from functions return-
ing strings, and, then, repackaging the app replacing the original
strings with these intercepted results. In this way, no matter what
kind of encryption is applied, the tool is able to get the decrypted

O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261 257

Fig. C.26. Distribution of the number of nodes in the CFG of (a) obfuscated and (b) non-obfuscated apps.

Fig. C.27. Distribution of the number of sinks in the CFG of (a) obfuscated and (b) non-obfuscated apps.

Fig. C.28. Distribution of the number of edges in the CFG of (a) obfuscated and (b) non-obfuscated apps.

value. Their method outperforms other tool-specific mechanisms
such as dex-oracle.2 Another deobfuscation work is presented by

2 https://github.com/CalebFenton/dex-oracle , last accessed March 2018

Bischel et al. [68]. Their focus is on identifier renaming obfusca-
tion, and their approach bases on comparing a given identifier
with a large database of non-obfuscated ones. As compared to
these attempts, our proposal does not aim to deobfuscate, but can

https://github.com/CalebFenton/dex-oracle

258 O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261

Fig. C.29. Distribution of the number of Goto instructions per line of code in (a) obfuscated and (b) non-obfuscated apps.

Fig. C.30. Distribution of the number of NOP instructions per line of code in (a) obfuscated and (b) non-obfuscated apps.

serve as starting point to address this in future. In particular, the
output of AndrODet is useful to spot the type of obfuscation at
stake, which can be considered to apply focused deobfuscation
techniques. Moreover, our approach considers several types of
obfuscation.

7. Conclusion

Obfuscation is one of the main obstacles when it comes to
Android app analysis. Thus, having amechanism to detect the type
of existing obfuscation (if any) can contribute saving resources
for analysis. Indeed, particular analysis techniques may be applied
once this detection has been done. To contribute in this direction,
in this work AndrODet has been proposed. AndrODet shows
promising accuracy ratios for detecting identifier renaming, string
encryption, and control flow obfuscation. Moreover, it requires
moderate training needs and can be configured to work in online
basis, that is, with incremental training. To foster further research
in this area, both AndrODet sources and the experimental dataset
are freely available.

Several issues are devised as future research directions. First,
addressing other types of obfuscation. Second, refining the feature
set to improve the current accuracy of modules. Last but not least,
extracting features by directly parsing the header of Dex files
which will save more time and will compensate the limitations of
Android reverse engineering tools.

Acknowledgments

This work has been partially supported by MINECO grant
TIN2016-79095-C2-2-R (SMOG-DEV) and CAM grant S2013/ICE-
3095 (CIBERDINE), co-funded with European FEDER funds. Fur-
thermore, it has been partially supported by the UC3M’s grant
Programa de Ayudas para la Movilidad. The authors would like to
thank the Allatori technical team for its valuable assistance, and,
also, the authors of the AMD and PraGuard datasets which made
their repositories available to us. Finally, we would like to thank
the anonymous reviewers for their comments.

Appendix A. Distribution of features for identifier renaming
detection

This section presents the distribution of attributes in the meth-
ods and classes which were extracted from obfuscated and non-
obfuscated samples of AMD dataset. (See Figs. A.8–A.17.)

Appendix B. Distribution of features for string encryption de-
tection

This section presents the distribution of attributes in the strings
which were extracted from obfuscated and non-obfuscated sam-
ples of AMD dataset. (See Figs. B.18–B.25)

O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261 259

Fig. C.31. Distribution of the total number of lines of code in (a) obfuscated and (b) non-obfuscated apps.

Fig. C.32. Distribution of the total number of lines of code in (a) obfuscated and (b) non-obfuscated apps.

Appendix C. Distribution of features for control flow obfusca-
tion detection

This section presents the distribution of attributes extracted
from theCFGandDalvik bytecode of obfuscated (fromAMDdataset)
andnon-obfuscated (fromF-Droid dataset) samples. (See Figs. C.26–
C.32).

References

[1] A. Bianchi, Y. Fratantonio, A. Machiry, C. Kruegel, G. Vigna, S.P.H. Chung,
W. Lee, Broken fingers: On the usage of the fingerprint API in android, in:
NDSS’18, 2018.

[2] Smartphone os market share. https://www.idc.com/promo/smartphone-
market-share/os. (Accessed 19 February 2018).

[3] Mobile malware evolution. https://securelist.com/mobile-malware-review-
2017/84139/. (Accessed 14 March 2018).

[4] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang, K. Zhang,
Understanding android obfuscation techniques: A large-scale investigation in
the wild, 2018. ArXiv preprint arXiv:1801.01633.

[5] V. Rastogi, Y. Chen, X. Jiang, Droidchameleon: evaluating android anti-
malware against transformation attacks, in: Proceedings of the 8th ACM
SIGSAC Symposiumon Information, Computer and Communications Security,
ACM, 2013, pp. 329–334.

[6] A. Bacci, A. Bartoli, F. Martinelli, E. Medvet, F. Mercaldo, C.A. Visaggio, Im-
pact of code obfuscation on android malware detection based on static and
dynamic analysis, in: 4th International Conference on Information Systems
Security and Privacy, Scitepress, 2018, pp. 379–385.

[7] Y. Duan, M. Zhang, A.V. Bhaskar, H. Yin, X. Pan, T. Li, X. Wang, X. Wang, Things
you may not know about android (un) packers: A systematic study based on
whole-system emulation, in: NDSS’18, 2018.

[8] Y. Wang, A. Rountev, Who changed you?: obfuscator identification for an-
droid, in: Proceedings of the 4th International Conference onMobile Software
Engineering and Systems, IEEE Press, 2017, pp. 154–164.

[9] A. Bifet, R. Kirkby, Data Stream Mining a Practical Approach, Citeseer, 2009.
[10] F. Wei, Y. Li, S. Roy, X. Ou, W. Zhou, Deep ground truth analysis of current

androidmalware, in: International Conference on Detection of Intrusions and
Malware, andVulnerability Assessment, DIMVA’17, Springer, Bonn, Germany,
2017, pp. 252–276.

[11] F-droid. https://f-droid.org. (Accessed 10 February 2018).
[12] T. Swearingen, W. Drevo, B. Cyphers, A. Cuesta-infante, A. Ross, K. Veera-

machaneni, ATM: A distributed, collaborative, scalable system for automated
machine learning, 2017.

[13] D. Maiorca, D. Ariu, I. Corona, M. Aresu, G. Giacinto, Stealth attacks: An
extended insight into the obfuscation effects on android malware, Comput.
Secur. 51 (2015) 16–31.

[14] Allatori. http://www.allatori.com/. (Accessed 10 February 2018).
[15] L.-K. Yan, H. Yin, Droidscope: Seamlessly reconstructing the os and dalvik

semantic views for dynamic android malware analysis, in: USENIX Security
Symposium, 2012, pp. 569–584.

[16] A. Desnos, G. Gueguen, Android: From reversing to decompilation, Proc. Black
Hat Abu Dhabi (2011) 77–101.

http://refhub.elsevier.com/S0167-739X(18)30931-2/b1
http://refhub.elsevier.com/S0167-739X(18)30931-2/b1
http://refhub.elsevier.com/S0167-739X(18)30931-2/b1
http://refhub.elsevier.com/S0167-739X(18)30931-2/b1
http://refhub.elsevier.com/S0167-739X(18)30931-2/b1
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://securelist.com/mobile-malware-review-2017/84139/
https://securelist.com/mobile-malware-review-2017/84139/
https://securelist.com/mobile-malware-review-2017/84139/
http://arxiv.org/abs/1801.01633
http://refhub.elsevier.com/S0167-739X(18)30931-2/b5
http://refhub.elsevier.com/S0167-739X(18)30931-2/b5
http://refhub.elsevier.com/S0167-739X(18)30931-2/b5
http://refhub.elsevier.com/S0167-739X(18)30931-2/b5
http://refhub.elsevier.com/S0167-739X(18)30931-2/b5
http://refhub.elsevier.com/S0167-739X(18)30931-2/b5
http://refhub.elsevier.com/S0167-739X(18)30931-2/b5
http://refhub.elsevier.com/S0167-739X(18)30931-2/b6
http://refhub.elsevier.com/S0167-739X(18)30931-2/b6
http://refhub.elsevier.com/S0167-739X(18)30931-2/b6
http://refhub.elsevier.com/S0167-739X(18)30931-2/b6
http://refhub.elsevier.com/S0167-739X(18)30931-2/b6
http://refhub.elsevier.com/S0167-739X(18)30931-2/b6
http://refhub.elsevier.com/S0167-739X(18)30931-2/b6
http://refhub.elsevier.com/S0167-739X(18)30931-2/b7
http://refhub.elsevier.com/S0167-739X(18)30931-2/b7
http://refhub.elsevier.com/S0167-739X(18)30931-2/b7
http://refhub.elsevier.com/S0167-739X(18)30931-2/b7
http://refhub.elsevier.com/S0167-739X(18)30931-2/b7
http://refhub.elsevier.com/S0167-739X(18)30931-2/b8
http://refhub.elsevier.com/S0167-739X(18)30931-2/b8
http://refhub.elsevier.com/S0167-739X(18)30931-2/b8
http://refhub.elsevier.com/S0167-739X(18)30931-2/b8
http://refhub.elsevier.com/S0167-739X(18)30931-2/b8
http://refhub.elsevier.com/S0167-739X(18)30931-2/b9
http://refhub.elsevier.com/S0167-739X(18)30931-2/b10
http://refhub.elsevier.com/S0167-739X(18)30931-2/b10
http://refhub.elsevier.com/S0167-739X(18)30931-2/b10
http://refhub.elsevier.com/S0167-739X(18)30931-2/b10
http://refhub.elsevier.com/S0167-739X(18)30931-2/b10
http://refhub.elsevier.com/S0167-739X(18)30931-2/b10
http://refhub.elsevier.com/S0167-739X(18)30931-2/b10
https://f-droid.org
http://refhub.elsevier.com/S0167-739X(18)30931-2/b13
http://refhub.elsevier.com/S0167-739X(18)30931-2/b13
http://refhub.elsevier.com/S0167-739X(18)30931-2/b13
http://refhub.elsevier.com/S0167-739X(18)30931-2/b13
http://refhub.elsevier.com/S0167-739X(18)30931-2/b13
http://www.allatori.com/
http://refhub.elsevier.com/S0167-739X(18)30931-2/b16
http://refhub.elsevier.com/S0167-739X(18)30931-2/b16
http://refhub.elsevier.com/S0167-739X(18)30931-2/b16

260 O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261

[17] H. Meng, V.L. Thing, Y. Cheng, Z. Dai, L. Zhang, A survey of android exploits in
the wild, Comput. Secur. (2018).

[18] Dexdump. http://googlesource.com/platform/dalvik/+/eclairrelease/dexdum
p/DexDump.c.(Accessed 10 February 2018).

[19] Dex2jar. https://bitbucket.org/pxb1988/dex2jar. (Accessed 10 February
2018).

[20] Androguard. http://github.com/androguard/androguard. (Accessed 10 Febru-
ary 2018).

[21] Apktool. https://ibotpeaches.github.io/Apktool. (Accessed 10 February 2018).
[22] K. Tam, A. Feizollah, N.B. Anuar, R. Salleh, L. Cavallaro, The evolution of android

malware and android analysis techniques, ACM Comput. Surv. 49 (4) (2017)
76.

[23] Y. Wang, A. Rountev, Who changed you ? Obfuscator identification for an-
droid, 2017.

[24] R. Yu, Android packers: facing the challenges, building solutions, in: Proceed-
ings of the 24th Virus Bulletin International Conference, 2014.

[25] B. Li, Y. Zhang, J. Li, W. Yang, D. Gu, Appspear: Automating the hidden-
code extraction and reassembling of packed android malware, J. Syst. Softw.
(2018).

[26] C. Collberg, C. Thomborson, D. Low, A Taxonomy of Obfuscating Transforma-
tions, Technical Report, 1997.

[27] S. Banescu, A. Pretschner, A tutorial on software obfuscation, Adv. Comput.
(2018).

[28] V. Balachandran, D.J. Tan, V.L. Thing, et al., Control flow obfuscation for
android applications, Comput. Secur. 61 (2016) 72–93.

[29] J. Li, D. Gu, Y. Luo, Android malware forensics: Reconstruction of malicious
events, in: Distributed Computing Systems Workshops, ICDCSW, 2012 32nd
International Conference on, IEEE, 2012, pp. 552–558.

[30] Dasho. https://www.preemptive.com/products/dasho/overview. (Accessed
10 February 2018).

[31] S. Dua, X. Du, Data Mining and Machine Learning in Cybersecurity, CRC press,
2016.

[32] I.H. Witten, E. Frank, M.A. Hall, C.J. Pal, Data Mining: Practical Machine
Learning Tools and Techniques, Morgan Kaufmann, 2016.

[33] Y. Ye, T. Li, D. Adjeroh, S. Iyengar, A survey on malware detection using data
mining techniques, ACM Comput. Surv. 50 (3) (2017) 41.

[34] A. Tsymbal, The Problem of Concept Drift: Definitions and Related Work, vol.
106, Computer Science Department, Trinity College Dublin, 2004.

[35] J.P. Barddal, H.M. Gomes, F. Enembreck, B. Pfahringer, A survey on feature drift
adaptation: Definition, benchmark, challenges and future directions, J. Syst.
Softw. 127 (2017) 278–294.

[36] I. Žliobaitė, A. Bifet, J. Read, B. Pfahringer, G. Holmes, Evaluation methods
and decision theory for classification of streaming data with temporal depen-
dence, Mach. Learn. 98 (3) (2015) 455–482.

[37] H.M. Gomes, J.P. Barddal, F. Enembreck, A. Bifet, A survey on ensemble
learning for data stream classification, ACM Comput. Surv. 50 (2) (2017) 23.

[38] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, Moa: Massive online analysis, J.
Mach. Learn. Res. 11 (May) (2010) 1601–1604.

[39] G.D.F. Morales, A. Bifet, SAMOA: scalable advanced massive online analysis, J.
Mach. Learn. Res. 16 (1) (2015) 149–153.

[40] P. Reutemann, J. Vanschoren, Scientific workflow management with ADAMS,
in: Joint EuropeanConference onMachine Learning andKnowledgeDiscovery
in Databases, Springer, 2012, pp. 833–837.

[41] S. Hido, S. Tokui, S. Oda, Jubatus: An open source platform for distributed
online machine learning, in: NIPS 2013 Workshop on Big Learning, Lake
Tahoe, 2013.

[42] Vowpal. https://github.com/JohnLangford/vowpal_wabbit. (Accessed 12
February 2018).

[43] Streamdm. http://huawei-noah.github.io/streamDM. (Accessed 12 February
2018).

[44] N.Y. Kim, J. Shim, S.-j. Cho, M. Park, S. Han, Android application protection
against static reverse engineering based on multidexing, J. Internet Serv. Inf.
Secur. 6 (4) (2016) 54–64.

[45] H. Choi, Y. Kim, Large-scale analysis of remote code injection attacks in
android apps, Secur. Commun. Netw. 2018 (2018).

[46] Y. Zhou, X. Jiang, Dissecting androidmalware: Characterization and evolution,
in: Security and Privacy, SP, 2012 IEEE Symposium on, IEEE, 2012, pp. 95–109.

[47] Mobile malware mini dump. http://contagiominidump.blogspot.com. (Ac-
cessed 19 February 2018).

[48] Tree-based feature selection. http://scikit-learn.org/stable/modules/feature_
selection.html. (Accessed 17 March 2018).

[49] F. Wei, Y. Li, S. Roy, X. Ou, W. Zhou, Deep ground truth analysis of current
android malware, 2015, pp. 1–22.

[50] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang, Riskranker: scalable and accurate
zero-day android malware detection, in: Proceedings of the 10th Interna-
tional Conference on Mobile Systems, Applications, and Services, ACM, 2012,
pp. 281–294.

[51] F.A. Narudin, A. Feizollah, N.B. Anuar, A. Gani, Evaluation of machine learning
classifiers formobilemalware detection, Soft Comput. 20 (1) (2016) 343–357.

[52] J.S. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-parameter
optimization, in: Advances in Neural Information Processing Systems, 2011,
pp. 2546–2554.

[53] P. Domingos, G. Hulten, Mining high-speed data streams, in: Proceedings of
the Sixth ACMSIGKDD International Conference onKnowledgeDiscovery and
Data Mining, ACM, 2000, pp. 71–80.

[54] N. Littlestone, M.K. Warmuth, The weighted majority algorithm, Inf. Comput.
108 (2) (1994) 212–261.

[55] A. Bifet, G. Holmes, B. Pfahringer, Leveraging bagging for evolving data
streams, in: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, Springer, 2010, pp. 135–150.

[56] M.A. Thalor, S. Patil, Ensemble for non stationary data stream: Performance
improvement over learn++. NSE, in: Information Processing, ICIP, 2015 Inter-
national Conference on, IEEE, 2015, pp. 225–228.

[57] C. Salperwyck, V. Lemaire, C. Hue, Incremental weighted naive bays classifiers
for data stream, in: Data Science, Learning by Latent Structures, and Knowl-
edge Discovery, Springer, 2015, pp. 179–190.

[58] I. Steinwart, A. Christmann, Support Vector Machines, Springer Science &
Business Media, 2008.

[59] J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1) (1986) 81–106.
[60] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[61] Evaluateprequential. https://www.cs.waikato.ac.nz/~abifet/MOA/API/classm

oame_1_1tasks_1_1_evaluate_prequential.html.(Accessed 12 March 2018).
[62] M. Dalla Preda, F. Maggi, Testing android malware detectors against code

obfuscation: a systematization of knowledge and unified methodology, J.
Comput. Virol. Hacking Tech. 13 (3) (2017) 209–232.

[63] J. Garcia,M. Hammad, B. Pedrood, A. Bagheri-khaligh, S.Malek, Department of
computer science obfuscation-resilient, efficient, and accurate detection and
family identification of android malware, 2015, pp. 1–15.

[64] F. Zhang, H. Huang, S. Zhu, D. Wu, P. Liu, Viewdroid: Towards obfuscation-
resilient mobile application repackaging detection, in: Proceedings of the
2014ACMConference on Security and Privacy inWireless &MobileNetworks,
ACM, 2014, pp. 25–36.

[65] L. Glanz, S. Amann, M. Eichberg, M. Reif, B. Hermann, J. Lerch, M. Mezini,
CodeMatch: obfuscation won’t conceal your repackaged app, in: Proceedings
of the 2017 11th JointMeeting on Foundations of Software Engineering, ACM,
2017, pp. 638–648.

[66] R. Baumann, M. Protsenko, T. Müller, Anti-ProGuard: Towards automated
deobfuscation of android apps, in: Proceedings of the 4th Workshop on
Security in Highly Connected IT Systems, ACM, 2017, pp. 7–12.

[67] W. Yoo, M. Ji, M. Kang, J.H. Yi, String deobfuscation scheme based on dynamic
code extraction for mobile malwares, 2 (2016) 1–8.

[68] B. Bichsel, V. Raychev, P. Tsankov, M. Vechev, Statistical deobfuscation of
android applications, in: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ACM, 2016, pp. 343–355.

Omid Mirzaei is a Ph.D. candidate in the Computer Se-
curity Lab (COSEC) at the Department of Computer Sci-
ence and Engineering of Universidad Carlos III deMadrid.
His Ph.D. is funded by the Community of Madrid and
European Union for the research project CIBERDINE. His
main area of research is computer security. However, he
is particularly interested in reverse engineering,malware
analysis, and the study of protocols for secure communi-
cation using artificial intelligence tools and techniques.
In addition, he is eager to tackle security issues from a
multi-objective perspective, i.e. trying to deal with such

problems by consuming the least possible amount of in hand resources. Currently,
he is working on security analysis, malware analysis and risk management with a
special focus on smartphone devices and is supervised by Dr. Juan Tapiador and Dr.
Jose M. de Fuentes.

Dr. Jose Maria de Fuentes is visiting lecturer with the
Computer Science and Engineering Department at Uni-
versidad Carlos III de Madrid, Spain. He is Computer Sci-
entist Engineer and Ph.D. in Computer Science by Univer-
sidad Carlos III de Madrid. He has published +30 articles
in international conferences and journals, all of them
related to applied cryptography andprivacy preservation.
He ismember of the Editorial board ofWireless Networks
journal, aswell asmember of the TPC of +30 international
conferences and workshops. He has participated in 6
national R+D projects and contracts. Since 2015 he has

been appointed National Secretary for the Spanish mirror of ISO/IEC JTC 1/SC 27.

http://refhub.elsevier.com/S0167-739X(18)30931-2/b17
http://refhub.elsevier.com/S0167-739X(18)30931-2/b17
http://refhub.elsevier.com/S0167-739X(18)30931-2/b17
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
http://googlesource.com/platform/dalvik/+/eclairrelease/dexdump/DexDump.c
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar
http://github.com/androguard/androguard
https://ibotpeaches.github.io/Apktool
http://refhub.elsevier.com/S0167-739X(18)30931-2/b22
http://refhub.elsevier.com/S0167-739X(18)30931-2/b22
http://refhub.elsevier.com/S0167-739X(18)30931-2/b22
http://refhub.elsevier.com/S0167-739X(18)30931-2/b22
http://refhub.elsevier.com/S0167-739X(18)30931-2/b22
http://refhub.elsevier.com/S0167-739X(18)30931-2/b25
http://refhub.elsevier.com/S0167-739X(18)30931-2/b25
http://refhub.elsevier.com/S0167-739X(18)30931-2/b25
http://refhub.elsevier.com/S0167-739X(18)30931-2/b25
http://refhub.elsevier.com/S0167-739X(18)30931-2/b25
http://refhub.elsevier.com/S0167-739X(18)30931-2/b26
http://refhub.elsevier.com/S0167-739X(18)30931-2/b26
http://refhub.elsevier.com/S0167-739X(18)30931-2/b26
http://refhub.elsevier.com/S0167-739X(18)30931-2/b27
http://refhub.elsevier.com/S0167-739X(18)30931-2/b27
http://refhub.elsevier.com/S0167-739X(18)30931-2/b27
http://refhub.elsevier.com/S0167-739X(18)30931-2/b28
http://refhub.elsevier.com/S0167-739X(18)30931-2/b28
http://refhub.elsevier.com/S0167-739X(18)30931-2/b28
http://refhub.elsevier.com/S0167-739X(18)30931-2/b29
http://refhub.elsevier.com/S0167-739X(18)30931-2/b29
http://refhub.elsevier.com/S0167-739X(18)30931-2/b29
http://refhub.elsevier.com/S0167-739X(18)30931-2/b29
http://refhub.elsevier.com/S0167-739X(18)30931-2/b29
https://www.preemptive.com/products/dasho/overview
http://refhub.elsevier.com/S0167-739X(18)30931-2/b31
http://refhub.elsevier.com/S0167-739X(18)30931-2/b31
http://refhub.elsevier.com/S0167-739X(18)30931-2/b31
http://refhub.elsevier.com/S0167-739X(18)30931-2/b32
http://refhub.elsevier.com/S0167-739X(18)30931-2/b32
http://refhub.elsevier.com/S0167-739X(18)30931-2/b32
http://refhub.elsevier.com/S0167-739X(18)30931-2/b33
http://refhub.elsevier.com/S0167-739X(18)30931-2/b33
http://refhub.elsevier.com/S0167-739X(18)30931-2/b33
http://refhub.elsevier.com/S0167-739X(18)30931-2/b34
http://refhub.elsevier.com/S0167-739X(18)30931-2/b34
http://refhub.elsevier.com/S0167-739X(18)30931-2/b34
http://refhub.elsevier.com/S0167-739X(18)30931-2/b35
http://refhub.elsevier.com/S0167-739X(18)30931-2/b35
http://refhub.elsevier.com/S0167-739X(18)30931-2/b35
http://refhub.elsevier.com/S0167-739X(18)30931-2/b35
http://refhub.elsevier.com/S0167-739X(18)30931-2/b35
http://refhub.elsevier.com/S0167-739X(18)30931-2/b36
http://refhub.elsevier.com/S0167-739X(18)30931-2/b36
http://refhub.elsevier.com/S0167-739X(18)30931-2/b36
http://refhub.elsevier.com/S0167-739X(18)30931-2/b36
http://refhub.elsevier.com/S0167-739X(18)30931-2/b36
http://refhub.elsevier.com/S0167-739X(18)30931-2/b37
http://refhub.elsevier.com/S0167-739X(18)30931-2/b37
http://refhub.elsevier.com/S0167-739X(18)30931-2/b37
http://refhub.elsevier.com/S0167-739X(18)30931-2/b38
http://refhub.elsevier.com/S0167-739X(18)30931-2/b38
http://refhub.elsevier.com/S0167-739X(18)30931-2/b38
http://refhub.elsevier.com/S0167-739X(18)30931-2/b39
http://refhub.elsevier.com/S0167-739X(18)30931-2/b39
http://refhub.elsevier.com/S0167-739X(18)30931-2/b39
http://refhub.elsevier.com/S0167-739X(18)30931-2/b40
http://refhub.elsevier.com/S0167-739X(18)30931-2/b40
http://refhub.elsevier.com/S0167-739X(18)30931-2/b40
http://refhub.elsevier.com/S0167-739X(18)30931-2/b40
http://refhub.elsevier.com/S0167-739X(18)30931-2/b40
https://github.com/JohnLangford/vowpal_wabbit
http://huawei-noah.github.io/streamDM
http://refhub.elsevier.com/S0167-739X(18)30931-2/b44
http://refhub.elsevier.com/S0167-739X(18)30931-2/b44
http://refhub.elsevier.com/S0167-739X(18)30931-2/b44
http://refhub.elsevier.com/S0167-739X(18)30931-2/b44
http://refhub.elsevier.com/S0167-739X(18)30931-2/b44
http://refhub.elsevier.com/S0167-739X(18)30931-2/b45
http://refhub.elsevier.com/S0167-739X(18)30931-2/b45
http://refhub.elsevier.com/S0167-739X(18)30931-2/b45
http://refhub.elsevier.com/S0167-739X(18)30931-2/b46
http://refhub.elsevier.com/S0167-739X(18)30931-2/b46
http://refhub.elsevier.com/S0167-739X(18)30931-2/b46
http://contagiominidump.blogspot.com
http://scikit-learn.org/stable/modules/feature_selection.html
http://scikit-learn.org/stable/modules/feature_selection.html
http://scikit-learn.org/stable/modules/feature_selection.html
http://refhub.elsevier.com/S0167-739X(18)30931-2/b50
http://refhub.elsevier.com/S0167-739X(18)30931-2/b50
http://refhub.elsevier.com/S0167-739X(18)30931-2/b50
http://refhub.elsevier.com/S0167-739X(18)30931-2/b50
http://refhub.elsevier.com/S0167-739X(18)30931-2/b50
http://refhub.elsevier.com/S0167-739X(18)30931-2/b50
http://refhub.elsevier.com/S0167-739X(18)30931-2/b50
http://refhub.elsevier.com/S0167-739X(18)30931-2/b51
http://refhub.elsevier.com/S0167-739X(18)30931-2/b51
http://refhub.elsevier.com/S0167-739X(18)30931-2/b51
http://refhub.elsevier.com/S0167-739X(18)30931-2/b52
http://refhub.elsevier.com/S0167-739X(18)30931-2/b52
http://refhub.elsevier.com/S0167-739X(18)30931-2/b52
http://refhub.elsevier.com/S0167-739X(18)30931-2/b52
http://refhub.elsevier.com/S0167-739X(18)30931-2/b52
http://refhub.elsevier.com/S0167-739X(18)30931-2/b53
http://refhub.elsevier.com/S0167-739X(18)30931-2/b53
http://refhub.elsevier.com/S0167-739X(18)30931-2/b53
http://refhub.elsevier.com/S0167-739X(18)30931-2/b53
http://refhub.elsevier.com/S0167-739X(18)30931-2/b53
http://refhub.elsevier.com/S0167-739X(18)30931-2/b54
http://refhub.elsevier.com/S0167-739X(18)30931-2/b54
http://refhub.elsevier.com/S0167-739X(18)30931-2/b54
http://refhub.elsevier.com/S0167-739X(18)30931-2/b55
http://refhub.elsevier.com/S0167-739X(18)30931-2/b55
http://refhub.elsevier.com/S0167-739X(18)30931-2/b55
http://refhub.elsevier.com/S0167-739X(18)30931-2/b55
http://refhub.elsevier.com/S0167-739X(18)30931-2/b55
http://refhub.elsevier.com/S0167-739X(18)30931-2/b56
http://refhub.elsevier.com/S0167-739X(18)30931-2/b56
http://refhub.elsevier.com/S0167-739X(18)30931-2/b56
http://refhub.elsevier.com/S0167-739X(18)30931-2/b56
http://refhub.elsevier.com/S0167-739X(18)30931-2/b56
http://refhub.elsevier.com/S0167-739X(18)30931-2/b57
http://refhub.elsevier.com/S0167-739X(18)30931-2/b57
http://refhub.elsevier.com/S0167-739X(18)30931-2/b57
http://refhub.elsevier.com/S0167-739X(18)30931-2/b57
http://refhub.elsevier.com/S0167-739X(18)30931-2/b57
http://refhub.elsevier.com/S0167-739X(18)30931-2/b58
http://refhub.elsevier.com/S0167-739X(18)30931-2/b58
http://refhub.elsevier.com/S0167-739X(18)30931-2/b58
http://refhub.elsevier.com/S0167-739X(18)30931-2/b59
http://refhub.elsevier.com/S0167-739X(18)30931-2/b60
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/classmoame_1_1tasks_1_1_evaluate_prequential.html
http://refhub.elsevier.com/S0167-739X(18)30931-2/b62
http://refhub.elsevier.com/S0167-739X(18)30931-2/b62
http://refhub.elsevier.com/S0167-739X(18)30931-2/b62
http://refhub.elsevier.com/S0167-739X(18)30931-2/b62
http://refhub.elsevier.com/S0167-739X(18)30931-2/b62
http://refhub.elsevier.com/S0167-739X(18)30931-2/b64
http://refhub.elsevier.com/S0167-739X(18)30931-2/b64
http://refhub.elsevier.com/S0167-739X(18)30931-2/b64
http://refhub.elsevier.com/S0167-739X(18)30931-2/b64
http://refhub.elsevier.com/S0167-739X(18)30931-2/b64
http://refhub.elsevier.com/S0167-739X(18)30931-2/b64
http://refhub.elsevier.com/S0167-739X(18)30931-2/b64
http://refhub.elsevier.com/S0167-739X(18)30931-2/b65
http://refhub.elsevier.com/S0167-739X(18)30931-2/b65
http://refhub.elsevier.com/S0167-739X(18)30931-2/b65
http://refhub.elsevier.com/S0167-739X(18)30931-2/b65
http://refhub.elsevier.com/S0167-739X(18)30931-2/b65
http://refhub.elsevier.com/S0167-739X(18)30931-2/b65
http://refhub.elsevier.com/S0167-739X(18)30931-2/b65
http://refhub.elsevier.com/S0167-739X(18)30931-2/b66
http://refhub.elsevier.com/S0167-739X(18)30931-2/b66
http://refhub.elsevier.com/S0167-739X(18)30931-2/b66
http://refhub.elsevier.com/S0167-739X(18)30931-2/b66
http://refhub.elsevier.com/S0167-739X(18)30931-2/b66
http://refhub.elsevier.com/S0167-739X(18)30931-2/b68
http://refhub.elsevier.com/S0167-739X(18)30931-2/b68
http://refhub.elsevier.com/S0167-739X(18)30931-2/b68
http://refhub.elsevier.com/S0167-739X(18)30931-2/b68
http://refhub.elsevier.com/S0167-739X(18)30931-2/b68

O. Mirzaei et al. / Future Generation Computer Systems 90 (2019) 240–261 261

Dr. Juan Tapiador is Associate Professor in the Com-
puter Security (COSEC) Lab at Universidad Carlos III de
Madrid, Spain. His research focuses on engineering secure
software and systems. His main research areas include
malware analysis, reverse engineering, anomaly and in-
trusion detection, and automating defense and analysis
techniques. He holds a M.Sc. in Computer Science from
theUniversity of Granada (2000), and a Ph.D. in Computer
Science (2004) from the same university.

Dr. Lorena Gonzalez-Manzano is visiting lecturer with
the Computer Science and Engineering Department at
Universidad Carlos III de Madrid, Spain. She is Computer
Scientist Engineer and Ph.D. in Computer Science by Uni-
versidad Carlos III de Madrid. Her research interests are
on Internet of Things and cloud computing security. She
has published +20 papers in national and international
conferences and journals and she is also involved in na-
tional R+Dprojects. She ismember of the TPCof +15 inter-
national conferences and workshops as well as member
of Editorial board of Future Generation Computer Sys-

tems journal.

	AndrODet: An adaptive Android obfuscation detector
	Introduction
	Background
	Dalvik Bytecode
	Obfuscation in Android
	Data Mining and Machine Learning

	Approach
	Overview
	Goals
	Dataset Description
	Feature Extraction and Feature Selection
	Features for Identifier Renaming Detection
	Features for String Encryption Detection
	Features for Control Flow Obfuscation Detection

	Classification algorithms and hyper-parameter tuning

	Evaluation
	Experimental settings
	Identifier Renaming Detection
	String Encryption Detection
	Control Flow Obfuscation Detection
	Performance Evaluation for combined techniques
	Comparison against batch learning algorithms
	Identifier Renaming Detection
	String Encryption Detection
	Control Flow Obfuscation Detection
	Combined Obfuscation Techniques

	Performance comparison: time and memory

	Threats to Validity
	Related work
	Conclusion
	Acknowledgments
	Appendix A Distribution of features for identifier renaming detection
	Appendix B Distribution of features for string encryption detection
	Appendix C Distribution of features for control flow obfuscation detection
	References

