
Second International Congress on Technology, Communication and Knowledge (ICTCK2015)
November, 11-12, 2015 - Mashhad Branch, Islamic Azad University, Mashhad, Iran

978-1-4673-9762-9/15/$31.00 ©2015 IEEE

Vertex Coloring Based on Artificial Bee Colony Algorithm

Vahid Chahkandi
Department of Computer Engineering

Islamic Azad University, Mashhad Branch
Mashhad, Iran

chahkandi.vahid@gmail.com

Omid Mirzaei
Computer Security Lab (COSEC)
Universidad Carlos III de Madrid

Madrid, Spain
omid.mirzaei@uc3m.es

Abstract— Given an undirected graph with a set of vertices and
edges, vertex coloring, a well-known classical optimization
problem in graph theory, consists of partitioning all vertices into
independent sets and assigning unique colors to adjacent
vertices with an effort to use the least number of colors. This
paper presents a new algorithm based on artificial bee colony
for solving the aforementioned problem. The proposed
algorithm is evaluated on the DIMACS challenging benchmarks
and computational results show that the presented method
achieves highly competitive results. The outstanding outcomes of
our algorithm are related to its computational time and also the
number of colors it uses. Our simulations show that the
computational time is considerably short and also the number of
colors for vertex coloring is optimal in most of the cases.

KEYWORDS: Graph Coloring, Vertex Coloring, Artificial Bee
Colony, Optimization Problems

I. INTRODUCTION
Graph coloring, also known as vertex coloring, is one of

the challenging optimization problems in graph theory. This
problem is interesting not only because it is computationally
intractable, but also because it has numerous practical
applications, including task scheduling [1], register allocation
[2], timetabling [3], and channel frequency assignment [4].
For these reasons, the graph coloring problem has been
addressed by a number of approaches over the past few
decades. However, none of them has turned out to be a clear
winner.

A legal k-coloring of an undirected graph , with
 vertices and edges, is the process of partitioning into

independent sets in which each set is a subset of non-adjacent
vertices of . Considering this definition, graph coloring aims
at finding the smallest for a given graph (its chromatic
number) such that has a legal -coloring [5].

Greedy coloring shows simply that ,
where denotes the maximum vertex degree of . In
other words, greedy coloring is looking for some ordering of
vertices so that the least number of colors could be assigned to
them (colors are assumed to be positive integers) having in
mind not to assign similar colors to any adjacent vertices. A
graph with maximum degree of can be colored using at most

 colors; however, computing the chromatic number of a

graph has proved to be an NP-hard problem. Thus, efficient
algorithm that uses close to colors is of our interest [6].

As mentioned earlier, minimizing the total number of
colors is one of the primary objectives in the graph coloring
problem. However, other criteria might also be considered.
For instance, a second and modified objective might be to use
the least possible colors at the least possible time which is an
important objective in areas where time plays an important
role. Problems with these kinds of objectives can be addressed
with the help of parallelism and distributed computing
although distributed environments could create some potential
challenges for this optimization problem. The main challenge
would be to obtain the least number of colors as the graph
structure is unknown and only limited information regarding
the neighbors of each vertex is available.

Several algorithms have been proposed for graph coloring
problem most of which can be identified as local search
methods. Well-known examples include the seminal
TabuCOL algorithm [7], simulated annealing [8], GRASP [9],
iterated local search [10], neighborhood search [5], reactive
partial tabu search [6], variable space search [11] and
clustering-guided tabu search [12]. Moreover, several
algorithms based on swarm intelligence have been developed
to deal with graph coloring problem, namely ant colony
optimization [13][14][15][16][17][18], particle swarm
optimization [19], and neural networks [20][21] to name a
few.

On the other hand, swarm-based solutions such as
Artificial Bee Colony (ABC) algorithm which was introduced
by Karaboga in [22], have also been applied to this problem.
Two major contributions based on ABC algorithm include
[23], and [24]. The main difference between these approaches
and the proposed ABC algorithm in this paper is related to the
fitness function. In our method, the degrees of vertices (i.e. the
number of edges intersect a specific vertex) are used as a
unique numerical fitness value by bees to perform the local
searches. However, in [23] and [24], fitness functions are
calculated based on the assigned colors to vertices. Most
importantly, the authors in [23] and [24] have tested their
approaches on their own constructed graph samples and have
not proved the efficiency of their methodologies by applying
them to well-known benchmarks.

Here, in this paper, a novel artificial bee colony algorithm
is presented to solve the problem of vertex coloring with the

312

idea to save the computational time and also to use the least
possible colors. It is expected that the suggested method can
deal with the unknown structure of graphs because it consists
of several local searches.

This paper is organized as follows. The proposed artificial
bee colony algorithm is presented in section 2. Experimental
results and the comparisons are all gathered in section 3.
Finally, conclusions and some future extensions are presented
in section 4.

II. THE PROPOSED ARTIFICIAL BEE COLONY ALGORITHM
Generally speaking, the proposed Artificial Bee Colony

(ABC) algorithm can be considered as a swarm intelligence
based solution for this optimization problem. In what follows,
the original version of ABC algorithm is described initially,
and, next, the real concepts are correlated to the vertex
coloring problem environment.

A. The original version of Artifical Bee Colony (ABC)

algorithm
In the real ABC model, three groups of bees can be

identified in each colony. These are employed bees, onlooker
bees, and scouts. There are a number of food sources each of
which represents a potential solution of an optimization
problem. Moreover, sources have different nectar amounts
which correspond to the quality (fitness) of various solutions.
It is assumed that only one artificial employed bee can make
use of each food source. Speaking in another way, there are
some food sources around the hive and the number of
employed bees in the colony is exactly the same as the number
of these sources. Employed bees leave the colony for their
food source and they start to dance around the hive as soon as
they return. Later, at some point in time, employed bees try to
create a modification on the source position in their memory
with the purpose of finding new sources with higher amounts
of nectars. Here, they leave the previous source by changing to
scout bees in order to find new food sources with higher
qualities. Scouts also replace abandoned sources with the new
ones. On the other side, onlooker bees are monitoring the
dancing behavior of employed bees upon which they will be
able to find new food sources.

The main steps of the ABC algorithm can be summarized
as below:

• A random population of positions is created for
different food sources which are equal to the number
of employed bees

• REPEAT

o Each employed bee leaves the colony for a food
source based on the position in her memory and
evaluates its nectar amount. Then, she returns to the
hive and starts to dance around it.

o Each onlooker bee keeps an eye on the dance
behavior of employed bees and picks out one of the
sources according to her observations. Next, she

flies to the chosen source and evaluates the nectar
amount of that source.

o Food sources which have been abandoned are
identified, and they are replaced with the new food
sources discovered by scouts.

o The food source with the highest amount of nectar
found so far is registered.

• UNTIL (requirements are met)

B. ABC algorithm adjusted for vertex coloring problem
The vertex coloring environment consists of numerous

nodes and edges. The nodes of a graph are considered as food
sources in the real ABC model and the degree of each vertex
is considered as its nectar amount. Our proposed algorithm
can be summarized as follows:

• Each employed bee chooses one vertex of the graph
randomly, and then moves to that position (notice that
only one employed bee is assigned to each node).
Next, all the employed bees calculate the degrees of
their own vertices (nectar amount) to share them with
onlookers around the hive. Nectar values are used
later by onlooker bees to move to the positions
specified by employed ones as follows:

 (1)

Where NB is the number of bees (onlooker or
employed), and is the degree of vertex . The
number of employed bees is considered half of the
graph vertices in our algorithm.

• REPEAT

o REPEAT
 After the employed bees return to the hive, they

share the information of nodes (their number) with
onlooker bees.

 The onlooker moves to the position (vertex) which
is specified by employed bee using Eq. (1). When
we want to decide for the position of each onlooker
bee, a random variable is produced. If that random
variable is shorter than or equal to the probability of
vertex , then the onlooker will move to that
position. If the degree of that position is zero, an
arbitrary color is assigned to it and we will not have
any constraints in using that color for other vertices,
because it is not adjacent with any vertices in the
graph.

 The neighbors of the current vertex are found and a
random color is assigned to each of them from the
palette.

 The assigned colors are compared with adjacent
vertices and if they are accepted, they will be added
to Used_Color array which demonstrates the
number of colors used so far.

313

 Else if they are not accepted, other colors are
considered from previously used colors which are
stored in Used_Color array.

 Else if onlookers are not yet able to find an
appropriate color from the memory, they will refer
to original palette and choose a new color from
there. Then, the selected color is added to the
memory (Used_Color array).

 After coloring all the neighbors of the assigned
vertex (the nectar of the current vertex is subtracted
when each of its neighbors are colored), the
onlooker bee should choose a color for the current
vertex itself. This color is either chosen from the
Used_Color array or palette.

 The onlooker bee changes to a scout and goes to
another unvisited vertex randomly after coloring the
current vertex (the nectar of the current vertex is set
to zero when an onlooker changes to a scout). For
simplicity, one onlooker bee changes to a scout at
each time instant.

o UNTIL (for all onlooker bees)
• Onlooker bees will move to the positions specified by

scouts and do the same coloring procedures.
• UNTIL (all vertices are colored and the used colors are

less than)

Figure 1. The flowchart of the proposed ABC algorithm

Note that the nodes of graph which play the role of food
sources in artificial bee colony algorithm are not indeed a
local solution as mentioned in the real model and they don’t
have any fitness values. They are just considered as food
sources to make a simulation of the problem environment with
real ABC algorithm.

To make all the theories of the proposed algorithm clearer,
the whole process is illustrated as a flowchart in Fig. 1.
Furthermore, the ABC algorithm has been implemented on a
sample vertex coloring problem and the stages are all
demonstrated in Fig 2.

Figure 2. The stages of applying the proposed algorithm on a sample vertex
coloring problem

III. EXPERIMENTAL RESULTS
In this section, several experiments are conducted to show

the performance of the proposed ABC algorithm. The
simulations are all applied on the well-known DIMACS
coloring benchmarks and are divided into two separate
sections. In the first section, the efficiency of the proposed
ABC algorithm is presented using two different criterions
which are the number of colors used by the algorithm in the
process of vertex coloring and also its computational time. In
the second section, the suggested method is compared with
four other effective algorithms.

A. The simulation results of the proposed ABC algorithm
To show the effectiveness of the developed algorithm, it

has been tested on 26 DIMACS datasets randomly. The
simulations have been conducted in MATLAB environment in
a computer with a Pentium 4 CPU 2.66 GHz, 4 GB Memory,
300 GB hard-disk capacity, and with Microsoft Windows
Vista Business operating system. Furthermore, it should be
mentioned that the provided results are indeed the average
obtained by applying the ABC algorithm for 60 times on each
sample. As it is clear from Table I, the presented algorithm has
reached the optimal solutions (least number of colors) in all
the cases. Moreover, the computational time of this method
for these datasets has been demonstrated in Fig 3.

314

Figure 3. Computational time of the ABC algorithm for different datasets of
DIMACS

TABLE I. OPTIMAL SOLUTIONS ON 26 RANDOM DIMACS DATASETS

The most outstanding outcome we obtained in our

simulations relates to the computational time of our method.
The ABC algorithm proposed for vertex coloring is nearly the
best among all other approaches suggested so far. This fact
has been shown in Fig. 4 and is further discussed in remaining
sections.

B. The comparative results between ABC algorithm and four
other effective algorithms
As mentioned before, the performance of an algorithm

proposed for this kind of problem is judged not only based on
the number of colors it uses, but also based on its
computational time. Therefore, four other effective algorithms
have been selected in order to provide a fair comparison and to
show the performance of the suggested solution. These are: (1)
RBA algorithm [21], (2) EMA algorithm [8], (3) MACOL
algorithm [25] and (4) ALS-COL algorithm [18]. It should be
emphasized once again that we were determined to compare
our method with the other ABC algorithm in [23]; however,
we are unable to perform such a comparison currently since
the other method has not been tested on a popular dataset.

1) ABC algorithm versus RBA algorithm
In recent years, neural networks have been applied to this

problem, mostly based on Hopfield or Hopfield-like networks
that employ binary neurons. The recursive binary adaptation
(RBA) algorithm is the only other neural algorithm for which
we have results on DIMACS benchmarks. All the other neural
approaches that are proposed for minimum coloring so far
either do not offer experimental results or their test graphs are
not available. Consequently, the proposed algorithm has been
applied on 7 random datasets and has been compared with
RBA algorithm as it has been demonstrated in Table II.

TABLE II. EXPERIMENTAL RESULTS OF OUR ALGORITHM VS. RBA
ALGORITHM ON 7 DIMACS DATASETS

The experimental results show that the ABC algorithm

uses fewer colors than the RBA algorithm in all the cases and
they are very close to optimal solutions. Furthermore, the
computational time of the developed algorithm is significantly
better than RBA in all the cases.

2) ABC algorithm versus EMA algorithm
In this section, the results of applying the ABC and EMA

algorithms on 9 random datasets are presented. The outcomes
are all gathered in Table III. Referring to this table, it is
obvious that the number of colors used by ABC algorithm is
less than the other method in most of the cases. However, it is
equal with the number of colors used by EMA algorithm in
some other cases. On the other side, the computational time of
the proposed method is more than the EMA algorithm in all
samples.

315

TABLE III. EXPERIMENTAL RESULTS OF OUR ALGORITHM VS. EMA
ALGORITHM ON 9 DIMACS DATASETS

3) ABC algorithm versus MACOL algorithm

The third research work considered for our comparison is
MACOL, which is a memetic based algorithm proposed for
this kind of problem. This method is in fact a combination of a
tabu search procedure with an evolutionary algorithm.

The experimental results of applying the ABC and
MACOL algorithms on 5 random datasets have been
presented in Table IV. Considering this table, it is clear that
the two methods produce solutions very close to optimal
solutions. However, the number of colors used by ABC
algorithm is more than the other one in some cases. On the
other hand, the computational time of the suggested method is
considerably less than the other evolutionary algorithm.

TABLE IV. EXPERIMENTAL RESULTS OF OUR ALGORITHM VS. MACOL
ALGORITHM ON 5 DIMACS DATASETS

4) ABC algorithm versus ALS-COL algorithm

The simulations end with the last comparison between the
proposed algorithm and ALS-COL. The ALS-COL is a new
and general ant methodology, where each ant is considered as
a local search. The results of applying these two algorithms on
4 random datasets have been collected in Table V. As it is
clear from this table, the ABC algorithm outperforms the other
one in all the cases by using less number of colors while it is
equal with optimal solutions in two cases and very close to
optimal in others. Finally, the computational time of the
proposed method is much better than the other one.

TABLE V. EXPERIMENTAL RESULTS OF OUR ALGORITHM VS. ALS-COL
ALGORITHM ON 4 DIMACS DATASETS

IV. CONCLUSIONS AND FUTURE EXTENSIONS
In this paper, we have presented the ABC algorithm, a

population based solution for vertex coloring which is a
popular and challenging optimization problem. The proposed
algorithm imitates the behavior of bees to deal with the
aforementioned problem. In the suggested algorithm, a set of
employed bees are initially assigned to some nodes of graph in
a random manner. Next, these bees return their gathered
information (degree of vertices) to the hive and share them
with the onlookers. After this, the onlooker bees fly to the
specified locations and start their processing operations for
coloring the vertices. If some criterions are met, these
employed bees become a scout one and will move to new
locations. To show the efficiency of the proposed bee colony
based algorithm, it has been applied on random samples of
DIMACS dataset. The experimental results show that the
ABC algorithm uses optimal number of colors in the majority
of cases. Additionally, one noticeable outcome obtained from
the simulations is that the computational time of the developed
algorithm is significantly low when applying on this type of
problem.

Ultimately, several future extensions can be considered to
improve the performance of this algorithm as follows:

1. The assignment of employed bees to new vertices
as scouts can be done more wisely. In our
approach, this process is done randomly as the
real model of bee colony algorithm. Maybe this
change can lead to an improvement in the number
of used colors.

2. The number of employed bees can be considered
more than half of the vertices. This can also lead
to less use of colors.

REFERENCES
[1] V. Lotfi and S. Sarin, “A graph coloring algorithm for large

scale scheduling problems,” Comput. Oper. Res., vol. 13,
no. 1, pp. 27–32, Jan. 1986.

[2] G. Chaitin, “Register allocation and spilling via graph
coloring,” ACM SIGPLAN Not., vol. 39, no. 4, p. 66, Apr.
2004.

[3] D. de Werra, “An introduction to timetabling,” Eur. J.
Oper. Res., vol. 19, no. 2, pp. 151–162, Feb. 1985.

[4] A. Gamst, “Some lower bounds for a class of frequency
assignment problems,” IEEE Trans. Veh. Technol., vol. 35,
no. 1, pp. 8–14, Feb. 1986.

316

[5] C. Avanthay, A. Hertz, and N. Zufferey, “A variable
neighborhood search for graph coloring,” Eur. J. Oper.
Res., vol. 151, no. 2, pp. 379–388, 2003.

[6] I. Blöchliger and N. Zufferey, “A graph coloring heuristic
using partial solutions and a reactive tabu scheme,”
Comput. Oper. Res., vol. 35, no. 3, pp. 960–975, 2008.

[7] S. Choudhary and G. N. Purohit, “Distributed algorithm for
optimized vertex coloring,” Proc. 2010 Int. Conf. Methods
Model. Comput. Sci. ICM2CS-2010, pp. 65–69, 2010.

[8] A. Di Blas, A. Jagota, and R. Hughey, “Energy function-
based approaches to graph coloring,” IEEE Trans. Neural
Networks, vol. 13, no. 1, pp. 81–91, 2002.

[9] M. Laguna and R. Martí, “A GRASP for coloring sparse
graphs,” Comput. Optim. Appl., vol. 19, no. 2, pp. 165–178,
2001.

[10] M. Chiarandini and T. Stützle, “An application of iterated
local search to graph coloring problem,” … Symp. Graph
Color. its …, pp. 1–13, 2002.

[11] A. Hertz, M. Plumettaz, and N. Zufferey, “Variable space
search for graph coloring,” Discret. Appl. Math., vol. 156,
no. 13, pp. 2551–2560, 2008.

[12] D. C. Porumbel, J. K. Hao, and P. Kuntz, “A search space
‘cartography’ for guiding graph coloring heuristics,”
Comput. Oper. Res., vol. 37, no. 4, pp. 769–778, 2010.

[13] D. Costa and A. Hertz, “Ants can colour graphs.”

[14] T. N. Bui, T. H. Nguyen, C. M. Patel, and K.-A. T. Phan,
“An ant-based algorithm for coloring graphs,” Discret.
Appl. Math., vol. 156, no. 2, pp. 190–200, Jan. 2008.

[15] K. A. Dowsland and J. M. Thompson, “An improved ant
colony optimisation heuristic for graph colouring,” Discret.
Appl. Math., vol. 156, no. 3, pp. 313–324, Feb. 2008.

[16] E. Salari and K. Eshghi, “An ACO Algorithm for Graph
Coloring Problem,” in 2005 ICSC Congress on
Computational Intelligence Methods and Applications,
2005, pp. 1–5.

[17] SangHyuck Ahn, SeungGwan Lee, and TaeChoong Chung,
“Modified ant colony system for coloring graphs,” in
Fourth International Conference on Information,
Communications and Signal Processing, 2003 and the
Fourth Pacific Rim Conference on Multimedia.
Proceedings of the 2003 Joint, 2003, vol. 3, pp. 1849–1853.

[18] M. Plumettaz, D. Schindl, and N. Zufferey, “Ant Local
Search and its efficient adaptation to graph colouring,” J.
Oper. Res. Soc., vol. 61, no. 5, pp. 819–826, Apr. 2009.

[19] G. Cui, L. Qin, S. Liu, Y. Wang, X. Zhang, and X. Cao,
“Modified PSO algorithm for solving planar graph coloring
problem,” Prog. Nat. Sci., vol. 18, no. 3, pp. 353–357, Mar.
2008.

[20] P. M. Talaván and J. Yáñez, “The graph coloring problem:
A neuronal network approach,” Eur. J. Oper. Res., vol. 191,
no. 1, pp. 100–111, Nov. 2008.

[21] A. Jagota, “An adaptive, multiple restarts neural network
algorithm for graph coloring,” Eur. J. Oper. Res., vol. 93,

no. 2, pp. 257–270, 1996.

[22] D. Karaboga and B. Akay, “Artificial Bee Colony (ABC)
Algorithm on Training Artificial Neural Networks,” 2007
IEEE 15th Signal Process. Commun. Appl., 2007.

[23] M. Dorrigiv and H. Yeganeh Markib, “Algorithms for the
graph coloring problem based on swarm intelligence,” AISP
2012 - 16th CSI Int. Symp. Artif. Intell. Signal Process., no.
Aisp, pp. 473–478, 2012.

[24] R. S. Tomar, S. Singh, S. Verma, and G. S. Tomar, “A
Novel ABC Optimization Algorithm for Graph Coloring
Problem,” 2013 5th Int. Conf. Comput. Intell. Commun.
Networks, pp. 257–261, 2013.

[25] Z. Lü and J.-K. Hao, “A memetic algorithm for graph
coloring,” Eur. J. Oper. Res., vol. 203, no. 1, pp. 241–250,
2010.

317

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

